8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neobavaisoflavone ameliorates LPS-induced RAW264.7 cell inflammations by suppressing the activation of NF-κB and MAPKs signaling pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective(s):

          Neobavaisoflavone (NBIF) is an isoflavone isolated from Psoralea corylifolia L. It can effectively regulate the redox state as a natural anti-oxidant and show some anti-inflammatory activity. However, its molecular mechanism is poorly studied. In this study, RAW264.7 cells were treated with lipopolysaccharide (LPS) to investigate the anti-inflammatory activity and potential NBIF mechanism.

          Materials and Methods:

          RAW264.7 cells were treated with LPS (62.5 ng/ml) and exposed to different concentrations of NBIF (0.01, 0.1, and 1 μM) for 24 hr. Inflammatory cytokines of RAW264.7 cells were measured by the Griess method, ELISA, and western blot. Phagocytosis of RAW264.7 macrophages was measured by FITC-dextran uptake assay. The phosphorylation protein expression levels of MAPKs (JNK, p38, and ERK), NF-κB p65, IκBα, and IκB kinase were analyzed by western blot. The results were analyzed using one-way ANOVA with Tukey’s multiple comparison test.

          Results:

          NBIF significantly inhibited NO and ROS production by down-regulation of iNOS and COX-2 protein expression. Additionally, the amount of release and protein levels of inflammation cytokines IL-6, IL-1β, and TNF-α were significantly decreased by NBIF. Moreover, FITC–dextran uptake assay by flow cytometry presented that NBIF significantly enhanced the phagocytic capacity of RAW264.7. Mechanistically, NBIF significantly down-regulated MAPK activation and inhibited the nuclear translocation of NF-κB p65.

          Conclusion:

          The present study demonstrates that NBIF inhibited inflammation and enhanced the phagocytic capacity of RAW264.7 cell-related MAPKs and NF-κB signaling pathways induced by LPS. These findings suggest that NBIF may have clinical utility as an anti-inflammatory agent.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study

          NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting inflammation in atherosclerosis — from experimental insights to the clinic

            Atherosclerosis, a dominant and growing cause of death and disability worldwide, involves inflammation from its inception to the emergence of complications. Targeting inflammatory pathways could therefore provide a promising new avenue to prevent and treat atherosclerosis. Indeed, clinical studies have now demonstrated unequivocally that modulation of inflammation can forestall the clinical complications of atherosclerosis. This progress pinpoints the need for preclinical investigations to refine strategies for combatting inflammation in the human disease. In this Review, we consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms. Along with lifestyle measures, pharmacological interventions to mute inflammation could complement traditional targets, such as lipids and hypertension, to make new inroads into the management of atherosclerotic risk. The contribution of inflammation to atherosclerosis is substantial, and is just beginning to be understood. In this Review, Soehnlein and Libby discuss how inflammation promotes atherosclerosis and its consequences, and how such processes could be targeted therapeutically. The potential pitfalls of targeting immune processes — namely the increased potential for infections — are also discussed, along with ways to modulate cardiovascular therapies in time and space to make them more effective.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of macrophages in the resolution of inflammation

              Macrophages are tissue-resident or infiltrated immune cells critical for innate immunity, normal tissue development, homeostasis, and repair of damaged tissue. Macrophage function is a sum of their ontogeny, the local environment in which they reside, and the type of injuries or pathogen to which they are exposed. In this Review, we discuss the role of macrophages in the restoration of tissue function after injury, highlighting important questions about how they respond to and modify the local microenvironment to restore homeostasis.
                Bookmark

                Author and article information

                Journal
                Iran J Basic Med Sci
                Iran J Basic Med Sci
                IJBMS
                Iranian Journal of Basic Medical Sciences
                Mashhad University of Medical Sciences (Mashhad, Iran )
                2008-3866
                2008-3874
                August 2022
                : 25
                : 8
                : 1021-1027
                Affiliations
                [1 ]State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
                [2 ]Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
                [3 ]China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
                [# ]These authors contributed eqully to this work
                Author notes
                [* ]Corresponding authors: Lijuan Chai. Tianjin University of Traditional Chinese Medicine, North China South Road, Jinghai District, Tianjin, 301617, People’s Republic of China. Tel: +86-22- 59596171; Email: cljuan1258@tjutcm.edu.cn, Han Zhang. Tianjin University of Traditional Chinese Medicine, North China South Road, Jinghai District, Tianjin, 301617, People’s Republic of China. Tel: +86-22- 59596171; Email: zhanghan0023@126.com
                Article
                10.22038/IJBMS.2022.65372.14389
                9464334
                36159335
                4b6e42fd-76e4-47be-a575-96085bc4c5f7

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 May 2022
                : 30 July 2022
                Categories
                Original Article

                inflammation,mapk signaling system,neobavaisoflavone,nf-kappa b

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content271

                Cited by3

                Most referenced authors425