15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stress response in Rhodococcus strains

      , ,
      Biotechnology Advances
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references175

          • Record: found
          • Abstract: found
          • Article: not found

          The biofilm matrix.

          The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emergent simplicity in microbial community assembly

            A major unresolved question in microbiome research is whether the complex taxonomic architectures observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly in natural ecosystems. We addressed this challenge by monitoring the assembly of hundreds of soil- and plant-derived microbiomes in well-controlled minimal synthetic media. Both the community-level function and the coarse-grained taxonomy of the resulting communities are highly predictable and governed by nutrient availability, despite substantial species variability. By generalizing classical ecological models to include widespread nonspecific cross-feeding, we show that these features are all emergent properties of the assembly of large microbial communities, explaining their ubiquity in natural microbiomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The envelope of mycobacteria.

              Mycobacteria, members of which cause tuberculosis and leprosy, produce cell walls of unusually low permeability, which contribute to their resistance to therapeutic agents. Their cell walls contain large amounts of C60-C90 fatty acids, mycolic acids, that are covalently linked to arabinogalactan. Recent studies clarified the unusual structures of arabinogalactan as well as of extractable cell wall lipids, such as trehalose-based lipooligosaccharides, phenolic glycolipids, and glycopeptidolipids. Most of the hydrocarbon chains of these lipids assemble to produce an asymmetric bilayer of exceptional thickness. Structural considerations suggest that the fluidity is exceptionally low in the innermost part of bilayer, gradually increasing toward the outer surface. Differences in mycolic acid structure may affect the fluidity and permeability of the bilayer, and may explain the different sensitivity levels of various mycobacterial species to lipophilic inhibitors. Hydrophilic nutrients and inhibitors, in contrast, traverse the cell wall presumably through channels of recently discovered porins.
                Bookmark

                Author and article information

                Journal
                Biotechnology Advances
                Biotechnology Advances
                Elsevier BV
                07349750
                January 2021
                January 2021
                : 107698
                Article
                10.1016/j.biotechadv.2021.107698
                33515672
                4b5c51d1-2fb5-4e03-bd6e-bbfcbe5c47b5
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article