In this work, we study the electrodynamics of metamaterials that consist of resonant non-magnetic inclusions embedded in an epsilon-near-zero (ENZ) host medium. It is shown that the inclusions can be designed in such a way that both the effective permittivity and permeability of the composite structure are simultaneously zero. Two different metamaterial configurations are studied and analyzed in detail. For a particular class of problems, it is analytically proven that such matched zero-index metamaterials may help improving the transmission through a waveguide bend, and that the scattering parameters may be completely independent of the specific arrangement of the inclusions and of the granularity of the crystal. The proposed concepts are numerically demonstrated at microwaves with a metamaterial realization based on an artificial plasma.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.