26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Heregulin-beta1 regulates the estrogen receptor-alpha gene expression and activity via the ErbB2/PI 3-K/Akt pathway.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examines whether the serine/threonine protein kinase, Akt, is involved in the crosstalk between the ErbB2 and estrogen receptor-alpha (ER-alpha) pathways. Treatment of MCF-7 cells with 10(-9) M heregulin-beta1 (HRG-beta1) resulted in a rapid phosphorylation of Akt and a 15-fold increase in Akt activity. Akt phosphorylation was blocked by inhibitors of phosphatidylinositol 3-kinase (PI 3-K), by antiestrogens, the protein tyrosine kinase inhibitor, genistein, and by AG825, a selective ErbB2 inhibitor; but not by AG30, a selective EGFR inhibitor. Akt phosphorylation by HRG-beta1 was abrogated by an arginine to cysteine mutation (R25C) in the pleckstrin homology (PH) domain of Akt, and HRG-beta1 did not induce Akt phosphorylation in the ER-negative variant of MCF-7, MCF-7/ADR. Transient transfection of ER-alpha into these cells restored Akt phosphorylation by HRG-beta1, suggesting the requirement of ER-alpha. HRG-beta1 did not activate Akt in MCF-7 cells stably transfected with an anti-ErbB2-targeted ribozyme, further confirming a role for ErbB2. Stable transfection of the cells with a dominant negative Akt or with the R25C-Akt mutant, as well as PI 3-K inhibitors, blocked the effect of HRG-beta1 on ER-alpha expression and activity and on the growth of MCF-7 cells. Stable transfection of MCF-7 cells with a constitutively active Akt mimicked the effect of HRG-beta1. Experiments employing selective ErbB inhibitors demonstrate that the effect of HRG-beta1 on ER-alpha expression and activity is also mediated by ErbB2 and not by EGFR, demonstrating that ErbB2 is the primary mediator of the effects of HRG-beta1 on ER-alpha regulation. Taken together, our data suggest that HRG-beta1, bound to the ErbB2 ErbB3 heterodimer, in the presence of membrane ER-alpha, interacts with and activates PI 3-K/Akt. Akt leads to nuclear ER-alpha phosphorylation, thereby altering its expression and transcriptional activity.

          Related collections

          Author and article information

          Journal
          Oncogene
          Oncogene
          Springer Science and Business Media LLC
          0950-9232
          0950-9232
          Apr 10 2003
          : 22
          : 14
          Affiliations
          [1 ] Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA.
          Article
          1206311
          10.1038/sj.onc.1206311
          12687010
          4b26a81a-2a50-44c1-a8d6-dc8cc2fbbd51
          History

          Comments

          Comment on this article