1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and validation of a multivariable genotype-informed gestational diabetes prediction algorithm for clinical use in the Mexican population: insights into susceptibility mechanisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Gestational diabetes mellitus (GDM) is underdiagnosed in Mexico. Early GDM risk stratification through prediction modeling is expected to improve preventative care. We developed a GDM risk assessment model that integrates both genetic and clinical variables.

          Research design and methods

          Data from pregnant Mexican women enrolled in the ‘Cuido mi Embarazo’ (CME) cohort were used for development (107 cases, 469 controls) and data from the ‘Mónica Pretelini Sáenz’ Maternal Perinatal Hospital (HMPMPS) cohort were used for external validation (32 cases, 199 controls). A 2-hour oral glucose tolerance test (OGTT) with 75 g glucose performed at 24–28 gestational weeks was used to diagnose GDM. A total of 114 single-nucleotide polymorphisms (SNPs) with reported predictive power were selected for evaluation. Blood samples collected during the OGTT were used for SNP analysis. The CME cohort was randomly divided into training (70% of the cohort) and testing datasets (30% of the cohort). The training dataset was divided into 10 groups, 9 to build the predictive model and 1 for validation. The model was further validated using the testing dataset and the HMPMPS cohort.

          Results

          Nineteen attributes (14 SNPs and 5 clinical variables) were significantly associated with the outcome; 11 SNPs and 4 clinical variables were included in the GDM prediction regression model and applied to the training dataset. The algorithm was highly predictive, with an area under the curve (AUC) of 0.7507, 79% sensitivity, and 71% specificity and adequately powered to discriminate between cases and controls. On further validation, the training dataset and HMPMPS cohort had AUCs of 0.8256 and 0.8001, respectively.

          Conclusions

          We developed a predictive model using both genetic and clinical factors to identify Mexican women at risk of developing GDM. These findings may contribute to a greater understanding of metabolic functions that underlie elevated GDM risk and support personalized patient recommendations.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis

          Women who develop gestational diabetes mellitus (GDM) have an elevated lifetime risk of type 2 diabetes mellitus. Recently, a series of studies has suggested that women with GDM also have an increased risk of cardiovascular disease (CVD). However, it is unclear if this risk is dependent upon the intercurrent development of type 2 diabetes. Thus, we conducted a systematic review and meta-analysis to evaluate the impact of GDM on future risk of incident CVD and to ascertain the role of type 2 diabetes in this regard.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion.

            Genome-wide association studies have shown that variation in MTNR1B (melatonin receptor 1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in beta cells in islets. Nondiabetic individuals carrying the risk allele and individuals with T2D showed increased expression of the receptor in islets. Insulin release from clonal beta cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which is predominantly released from the pineal gland in the brain, is involved in the pathogenesis of T2D. Given the increased expression of MTNR1B in individuals at risk of T2D, the pathogenic effects are likely exerted via a direct inhibitory effect on beta cells. In view of these results, blocking the melatonin ligand-receptor system could be a therapeutic avenue in T2D.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico.

              Performing genetic studies in multiple human populations can identify disease risk alleles that are common in one population but rare in others, with the potential to illuminate pathophysiology, health disparities, and the population genetic origins of disease alleles. Here we analysed 9.2 million single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and other Latin Americans: 3,848 with type 2 diabetes and 4,366 non-diabetic controls. In addition to replicating previous findings, we identified a novel locus associated with type 2 diabetes at genome-wide significance spanning the solute carriers SLC16A11 and SLC16A13 (P = 3.9 × 10(-13); odds ratio (OR) = 1.29). The association was stronger in younger, leaner people with type 2 diabetes, and replicated in independent samples (P = 1.1 × 10(-4); OR = 1.20). The risk haplotype carries four amino acid substitutions, all in SLC16A11; it is present at ~50% frequency in Native American samples and ~10% in east Asian, but is rare in European and African samples. Analysis of an archaic genome sequence indicated that the risk haplotype introgressed into modern humans via admixture with Neanderthals. The SLC16A11 messenger RNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism, most notably causing an increase in intracellular triacylglycerol levels. Despite type 2 diabetes having been well studied by genome-wide association studies in other populations, analysis in Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for type 2 diabetes with a possible role in triacylglycerol metabolism.
                Bookmark

                Author and article information

                Journal
                BMJ Open Diabetes Res Care
                BMJ Open Diabetes Res Care
                bmjdrc
                bmjdrc
                BMJ Open Diabetes Research & Care
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2052-4897
                2023
                21 April 2023
                : 11
                : 2
                : e003046
                Affiliations
                [1 ]departmentResearch and Development Department , Patia Europe , San Sebastian, Spain
                [2 ]departmentHealth Sciences University Center , Ringgold_27802University of Guadalajara , Guadalajara, Mexico
                [3 ]departmentOperative Solutions , Ringgold_216237Carlos Slim Foundation , Mexico City, Mexico
                [4 ]departmentFaculty of Medicine , Ringgold_27782Autonomous University of the State of Mexico , Toluca, Mexico
                [5 ]departmentFaculty of Medicine , Ringgold_7180National Autonomous University of Mexico , Mexico City, Mexico
                Author notes
                [Correspondence to ] Dr Héctor Gallardo-Rincón; hgallardo@ 123456fundacioncarlosslim.org
                Author information
                http://orcid.org/0000-0002-0811-4606
                Article
                bmjdrc-2022-003046
                10.1136/bmjdrc-2022-003046
                10124192
                37085278
                4b0f2332-f3eb-4c32-bf79-bee634b94492
                © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 14 July 2022
                : 01 April 2023
                Funding
                Funded by: Carlos Slim Foundation;
                Award ID: Not applicable
                Funded by: Patia Europe;
                Award ID: Not applicable
                Categories
                Cardiovascular and Metabolic Risk
                1506
                1870
                Custom metadata
                unlocked

                diabetes, gestational
                diabetes, gestational

                Comments

                Comment on this article