7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacteriophage therapy for drug-resistant Staphylococcus aureus infections

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

          (2022)
          Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phage Therapy in the Postantibiotic Era

              SUMMARY Antibiotic resistance is arguably the biggest current threat to global health. An increasing number of infections are becoming harder or almost impossible to treat, carrying high morbidity, mortality, and financial cost. The therapeutic use of bacteriophages, viruses that infect and kill bacteria, is well suited to be part of the multidimensional strategies to combat antibiotic resistance. Although phage therapy was first implemented almost a century ago, it was brought to a standstill after the successful introduction of antibiotics. Now, with the rise of antibiotic resistance, phage therapy is experiencing a well-deserved rebirth. Among the admittedly vast literature recently published on this topic, this review aims to provide a forward-looking perspective on phage therapy and its role in modern society. We cover the key points of the antibiotic resistance crisis and then explain the biological and evolutionary principles that support the use of phages, their interaction with the immune system, and a comparison with antibiotic therapy. By going through up-to-date reports and, whenever possible, human clinical trials, we examine the versatility of phage therapy. We discuss conventional approaches as well as novel strategies, including the use of phage-antibiotic combinations, phage-derived enzymes, exploitation of phage resistance mechanisms, and phage bioengineering. Finally, we discuss the benefits of phage therapy beyond the clinical perspective, including opportunities for scientific outreach and effective education, interdisciplinary collaboration, cultural and economic growth, and even innovative use of social media, making the case that phage therapy is more than just an alternative to antibiotics.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/2574634Role: Role: Role: Role:
                Role: Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/400347Role: Role: Role: Role: Role:
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                31 January 2024
                2024
                : 14
                : 1336821
                Affiliations
                [1] 1 College of Public Health, Zhengzhou University , Zhengzhou, China
                [2] 2 Chinese PLA Center for Disease Control and Prevention , Beijing, China
                [3] 3 College of Public Health, China Medical University , Shenyang, China
                Author notes

                Edited by: Marion Skalweit, Case Western Reserve University, United States

                Reviewed by: Henok Ayalew Tegegne, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), France

                António Machado, Universidad San Francisco de Quito, Ecuador

                *Correspondence: Rongtao Zhao, zhaorongtao1984@ 123456163.com ; Hongbin Song, hongbinsong@ 123456263.net

                †These authors have contributed equally to this work

                Article
                10.3389/fcimb.2024.1336821
                10864608
                38357445
                4ae376cd-227b-4942-b94f-773a3e02c456
                Copyright © 2024 Liu, Wang, Zhou, Guo, Yang, Liu, Zhao and Song

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 November 2023
                : 09 January 2024
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 162, Pages: 17, Words: 9014
                Funding
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by Natural Science Foundation of China (32141003 and 82202577), and National Key Research and Development Program of China (2021YFC2301100).
                Categories
                Cellular and Infection Microbiology
                Review
                Custom metadata
                Antibiotic Resistance and New Antimicrobial drugs

                Infectious disease & Microbiology
                bacteriophages,drug-resistant staphylococcus aureus ,infection,bacteriophage therapy,antimicrobial resistance

                Comments

                Comment on this article