Ca 2+ influx through Orai1 channels is crucial for several T cell functions, but a role in regulating basal cellular motility has not been described. Here, we show that inhibition of Orai1 channel activity increases average cell velocities by reducing the frequency of pauses in human T cells migrating through confined spaces, even in the absence of extrinsic cell contacts or antigen recognition. Utilizing a novel ratiometric genetically encoded cytosolic Ca 2+ indicator, Salsa6f, which permits real-time monitoring of cytosolic Ca 2+ along with cell motility, we show that spontaneous pauses during T cell motility in vitro and in vivo coincide with episodes of cytosolic Ca 2+ signaling. Furthermore, lymph node T cells exhibited two types of spontaneous Ca 2+ transients: short-duration ‘sparkles’ and longer duration global signals. Our results demonstrate that spontaneous and self-peptide MHC-dependent activation of Orai1 ensures random walk behavior in T cells to optimize immune surveillance.
To help protect the body from disease, small immune cells called T lymphocytes move rapidly, searching for signs of infection. These signs are antigens – processed pieces of proteins from invading bacteria and viruses – which are displayed on the surface of so-called antigen-presenting cells. To visit as many different antigen-presenting cells as possible, T cells move quickly from one to the next in an apparently random manner. How T cells are programmed to move in this way is largely unknown.
The entry of calcium ions into cells triggers characteristic actions in many cells throughout the body. In T cells, calcium ions enter through Orai1 proteins that form calcium channels on the cell surface. Now, Dong, Othy et al. have asked whether calcium signals guide moving T cells as they search for antigens.
Experiments with individual human T cells in small tubes showed that blocking the Orai1 calcium channels caused the T cells to move faster, because the cells paused less often. The same was seen when human T cells were transplanted into mice.
These findings suggested that calcium signals may indeed guide the T cells’ movement, but actually being able to see the calcium signals in the cell would give a much clearer picture of what goes on. To achieve this, Dong, Othy et al. report, in a related study, how they genetically engineered mice to produce a calcium-sensitive reporter protein in their T cells.
Using these new transgenic mice, Dong, Othy et al. could see calcium signals in the T cells before each of the T cell’s pauses. Further experiments showed that the calcium signals that control the cell’s movements are triggered both by contact with the antigen-presenting cells and internally within the T cells themselves. In another related study, Guichard et al. also conclude that contact with antigen-presenting cells causes calcium signals that control the responses of T cells.
Seemingly random patterns of movement help T cells search for signs of infection, and these new findings reveal a basic part of how T cells are programmed to move in this way. A deeper understanding of T cell movement might allow this process to be controlled. In particular, this knowledge could lead to new treatments for autoimmune diseases, in which T cells incorrectly recognize the body’s own antigens as signs of an infection.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.