16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impaired Axonal Regeneration in Diabetes. Perspective on the Underlying Mechanism from In Vivo and In Vitro Experimental Studies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Axonal regeneration after peripheral nerve injury is impaired in diabetes, but its precise mechanisms have not been elucidated. In this paper, we summarize the progress of research on altered axonal regeneration in animal models of diabetes and cultured nerve tissues exposed to hyperglycemia. Impaired nerve regeneration in animal diabetes can be attributed to dysfunction of neurons and Schwann cells, unfavorable stromal environment supportive of regenerating axons, and alterations of target tissues receptive to reinnervation. In particular, there are a number of factors such as enhanced activity of the negative regulators of axonal regeneration (e.g., phosphatase and tensin homolog deleted on chromosome 10 and Rho/Rho kinase), delayed Wallerian degeneration, alterations of the extracellular matrix components, enhanced binding of advanced glycation endproducts (AGEs) with the receptor for AGE, and delayed muscle reinnervation that can be obstacles to functional recovery after an axonal injury. It is also noteworthy that we and others have observed excessive neurite outgrowth from peripheral sensory ganglion explants from streptozotocin (STZ)-diabetic mice in culture and enhanced regeneration of small nerve fibers after sciatic nerve injury in STZ-induced diabetic rats. The excess of abortive neurite outgrowth may lead to misconnections of axons and target organs, which may interfere with appropriate target reinnervation and functional repair. Amelioration of perturbed nerve regeneration may be crucial for the future management of diabetic neuropathy.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway.

          The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wallerian degeneration: an emerging axon death pathway linking injury and disease.

            Axon degeneration is a prominent early feature of most neurodegenerative disorders and can also be induced directly by nerve injury in a process known as Wallerian degeneration. The discovery of genetic mutations that delay Wallerian degeneration has provided insight into mechanisms underlying axon degeneration in disease. Rapid Wallerian degeneration requires the pro-degenerative molecules SARM1 and PHR1. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is essential for axon growth and survival. Its loss from injured axons may activate Wallerian degeneration, whereas NMNAT overexpression rescues axons from degeneration. Here, we discuss the roles of these and other proposed regulators of Wallerian degeneration, new opportunities for understanding disease mechanisms and intriguing links between Wallerian degeneration, innate immunity, synaptic growth and cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons.

              In vivo regeneration of peripheral neurons is constrained and rarely complete, and unfortunately patients with major nerve trunk transections experience only limited recovery. Intracellular inhibition of neuronal growth signals may be among these constraints. In this work, we investigated the role of PTEN (phosphatase and tensin homolog deleted on chromosome 10) during regeneration of peripheral neurons in adult Sprague Dawley rats. PTEN inhibits phosphoinositide 3-kinase (PI3-K)/Akt signaling, a common and central outgrowth and survival pathway downstream of neuronal growth factors. While PI3-K and Akt outgrowth signals were expressed and activated within adult peripheral neurons during regeneration, PTEN was similarly expressed and poised to inhibit their support. PTEN was expressed in neuron perikaryal cytoplasm, nuclei, regenerating axons, and Schwann cells. Adult sensory neurons in vitro responded to both graded pharmacological inhibition of PTEN and its mRNA knockdown using siRNA. Both approaches were associated with robust rises in the plasticity of neurite outgrowth that were independent of the mTOR (mammalian target of rapamycin) pathway. Importantly, this accelerated outgrowth was in addition to the increased outgrowth generated in neurons that had undergone a preconditioning lesion. Moreover, following severe nerve transection injuries, local pharmacological inhibition of PTEN or siRNA knockdown of PTEN at the injury site accelerated axon outgrowth in vivo. The findings indicated a remarkable impact on peripheral neuron plasticity through PTEN inhibition, even within a complex regenerative milieu. Overall, these findings identify a novel route to propagate intrinsic regeneration pathways within axons to benefit nerve repair.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                01 February 2017
                2017
                : 8
                : 12
                Affiliations
                [1] 1Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science , Tokyo, Japan
                [2] 2Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine , Hirosaki, Japan
                [3] 3TechnoMaster Co. Ltd. , Yokohama, Japan
                Author notes

                Edited by: Gaetano Santulli, Columbia University, USA

                Reviewed by: Rosalia Mendez-Otero, Federal University of Rio de Janeiro, Brazil; Rayaz Ahmed Malik, Weill Cornell Medical College in Qatar, Qatar

                *Correspondence: Kazunori Sango, sango-kz@ 123456igakuken.or.jp

                Specialty section: This article was submitted to Diabetes, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2017.00012
                5285379
                28203223
                4ab4b301-a5d4-4633-9488-50864ba2e4e3
                Copyright © 2017 Sango, Mizukami, Horie and Yagihashi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 September 2016
                : 16 January 2017
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 87, Pages: 8, Words: 6707
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                diabetic neuropathy,axonal regeneration,animal models,dorsal root ganglia,schwann cells

                Comments

                Comment on this article