12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ancient DNA Assessment of Tiger Salamander Population in Yellowstone National Park

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent data indicates that blotched tiger salamanders ( Ambystoma tigrinum melanostictum) in northern regions of Yellowstone National Park are declining due to climate-related habitat changes. In this study, we used ancient and modern mitochondrial haplotype diversity to model the effective size of this amphibian population through recent geological time and to assess past responses to climatic changes in the region. Using subfossils collected from a cave in northern Yellowstone, we analyzed >700 base pairs of mitochondrial sequence from 16 samples ranging in age from 100 to 3300 years old and found that all shared an identical haplotype. Although mitochondrial diversity was extremely low within the living population, we still were able to detect geographic subdivision within the local area. Using serial coalescent modelling with Bayesian priors from both modern and ancient genetic data we simulated a range of probable population sizes and mutation rates through time. Our simulations suggest that regional mitochondrial diversity has remained relatively constant even through climatic fluctuations of recent millennia.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Arlequin (version 3.0): An integrated software package for population genetics data analysis

          Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA.

            We show that DNA molecules amplified by PCR from DNA extracted from animal bones and teeth that vary in age between 25 000 and over 50 000 years carry C-->T and G-->A substitutions. These substitutions can reach high proportions among the molecules amplified and are due to the occurrence of modified deoxycytidine residues in the template DNA. If the template DNA is treated with uracil N-glycosylase, these substitutions are dramatically reduced. They are thus likely to result from deamination of deoxycytidine residues. In addition, 'jumping PCR', i.e. the occurrence of template switching during PCR, may contribute to these substitutions. When DNA sequences are amplified from ancient DNA extracts where few template molecules initiate the PCR, precautions such as DNA sequence determination of multiple clones derived from more than one independent amplification are necessary in order to reduce the risk of determination of incorrect DNA sequences. When such precautionary measures are taken, errors induced by damage to the DNA template are unlikely to be more frequent than approximately 0.1% even under the unlikely scenario where each amplification starts from a single template molecule.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum).

              The field of landscape genetics has great potential to identify habitat features that influence population genetic structure. To identify landscape correlates of genetic differentiation in a quantitative fashion, we developed a novel approach using geographical information systems analysis. We present data on blotched tiger salamanders (Ambystoma tigrinum melanostictum) from 10 sites across the northern range of Yellowstone National Park in Montana and Wyoming, USA. We used eight microsatellite loci to analyse population genetic structure. We tested whether landscape variables, including topographical distance, elevation, wetland likelihood, cover type and number of river and stream crossings, were correlated with genetic subdivision (F(ST)). We then compared five hypothetical dispersal routes with a straight-line distance model using two approaches: (i) partial Mantel tests using Akaike's information criterion scores to evaluate model robustness and (ii) the BIOENV procedure, which uses a Spearman rank correlation to determine the combination of environmental variables that best fits the genetic data. Overall, gene flow appears highly restricted among sites, with a global F(ST) of 0.24. While there is a significant isolation-by-distance pattern, incorporating landscape variables substantially improved the fit of the model (from an r2 of 0.3 to 0.8) explaining genetic differentiation. It appears that gene flow follows a straight-line topographic route, with river crossings and open shrub habitat correlated with lower F(ST) and thus, decreased differentiation, while distance and elevation difference appear to increase differentiation. This study demonstrates a general approach that can be used to determine the influence of landscape variables on population genetic structure.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                12 March 2012
                : 7
                : 3
                : e32763
                Affiliations
                [1]Department of Biology, Stanford University, Stanford, California, United States of America
                University of Copenhagen, Denmark
                Author notes

                Conceived and designed the experiments: SM EH. Performed the experiments: SM. Analyzed the data: SM. Contributed reagents/materials/analysis tools: SM EH. Wrote the paper: SM EH.

                [¤]

                Current address: Department of Biology, University of Washington, Seattle, Washington, United States of America

                Article
                PONE-D-11-20753
                10.1371/journal.pone.0032763
                3299687
                22427878
                4ab3f852-cbb4-4281-b37c-57199f9e8fcd
                McMenamin, Hadly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 October 2011
                : 2 February 2012
                Page count
                Pages: 6
                Categories
                Research Article
                Biology
                Ecology
                Evolutionary Biology
                Paleontology
                Genetics
                Population Genetics
                Paleontology
                Population Biology
                Zoology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article