Background: PERK controls unfolded protein load in the ER and promotes a latent gene expression program whose relative contributions to cell physiology are incompletely understood.
Results: Acute PERK inhibition deregulates protein synthesis and promotes accumulation of misfolded pro-insulin.
Conclusion: PERK contributes to proteostasis acutely.
Significance: The proteostatic activity of PERK can be uncoupled from its latent role in gene expression.
Loss-of-function mutations in EIF2AK3, encoding the pancreatic endoplasmic reticulum (ER) kinase, PERK, are associated with dysfunction of the endocrine pancreas and diabetes. However, to date it has not been possible to uncouple the long term developmental effects of PERK deficiency from sensitization to physiological levels of ER unfolded protein stress upon interruption of PERK modulation of protein synthesis rates. Here, we report that a selective PERK inhibitor acutely deregulates protein synthesis in freshly isolated islets of Langerhans, across a range of glucose concentrations. Acute loss of the PERK-mediated strand of the unfolded protein response leads to rapid accumulation of misfolded pro-insulin in cultured beta cells and is associated with a kinetic defect in pro-insulin processing. These in vitro observations uncouple the latent role of PERK in beta cell development from the regulation of unfolded protein flux through the ER and attest to the importance of the latter in beta cell proteostasis.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.