2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SARS-CoV-2 Serum Viral Load and Prognostic Markers Proposal for COVID-19 Pneumonia in Low-Dose Radiation Therapy Treated Patients

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several studies have shown that the plasma RNA of SARS-CoV-2 seems to be associated with a worse prognosis of COVID-19. In the present study, we investigated plasma RNA in COVID-19 patients treated with low-dose radiotherapy to determine its prognostic value. Data were collected from the IPACOVID prospective clinical trial (NCT04380818). The study included 46 patients with COVID-19 pneumonia treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as laboratory variables, and SARS-CoV-2 serum viral load, were analyzed before LDRT, at 24 h, and one week after treatment. The mean age of the patients was 85 years, and none received any of the SARS-CoV-2 vaccine doses. The mortality ratio during the course of treatment was 33%. RT-qPCR showed amplification in 23 patients. Higher mortality rate was associated with detectable viremia. Additionally, C-reactive protein, lactate dehydrogenase, and aspartate aminotransferase were significant risk factors associated with COVID-19 mortality. Our present findings show that detectable SARS-CoV-2 plasma viremia 24 h before LDRT is significantly associated with increased mortality rates post-treatment, thus downsizing the treatment success.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Characteristics of SARS-CoV-2 and COVID-19

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute respiratory disease, named ‘coronavirus disease 2019’ (COVID-19), which threatens human health and public safety. In this Review, we describe the basic virology of SARS-CoV-2, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses. We summarize current knowledge of clinical, epidemiological and pathological features of COVID-19, as well as recent progress in animal models and antiviral treatment approaches for SARS-CoV-2 infection. We also discuss the potential wildlife hosts and zoonotic origin of this emerging virus in detail.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SARS-CoV-2 viral load is associated with increased disease severity and mortality

            The relationship between SARS-CoV-2 viral load and risk of disease progression remains largely undefined in coronavirus disease 2019 (COVID-19). Here, we quantify SARS-CoV-2 viral load from participants with a diverse range of COVID-19 disease severity, including those requiring hospitalization, outpatients with mild disease, and individuals with resolved infection. We detected SARS-CoV-2 plasma RNA in 27% of hospitalized participants, and 13% of outpatients diagnosed with COVID-19. Amongst the participants hospitalized with COVID-19, we report that a higher prevalence of detectable SARS-CoV-2 plasma viral load is associated with worse respiratory disease severity, lower absolute lymphocyte counts, and increased markers of inflammation, including C-reactive protein and IL-6. SARS-CoV-2 viral loads, especially plasma viremia, are associated with increased risk of mortality. Our data show that SARS-CoV-2 viral loads may aid in the risk stratification of patients with COVID-19, and therefore its role in disease pathogenesis should be further explored.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The signal pathways and treatment of cytokine storm in COVID-19

              The Coronavirus Disease 2019 (COVID-19) pandemic has become a global crisis and is more devastating than any other previous infectious disease. It has affected a significant proportion of the global population both physically and mentally, and destroyed businesses and societies. Current evidence suggested that immunopathology may be responsible for COVID-19 pathogenesis, including lymphopenia, neutrophilia, dysregulation of monocytes and macrophages, reduced or delayed type I interferon (IFN-I) response, antibody-dependent enhancement, and especially, cytokine storm (CS). The CS is characterized by hyperproduction of an array of pro-inflammatory cytokines and is closely associated with poor prognosis. These excessively secreted pro-inflammatory cytokines initiate different inflammatory signaling pathways via their receptors on immune and tissue cells, resulting in complicated medical symptoms including fever, capillary leak syndrome, disseminated intravascular coagulation, acute respiratory distress syndrome, and multiorgan failure, ultimately leading to death in the most severe cases. Therefore, it is clinically important to understand the initiation and signaling pathways of CS to develop more effective treatment strategies for COVID-19. Herein, we discuss the latest developments in the immunopathological characteristics of COVID-19 and focus on CS including the current research status of the different cytokines involved. We also discuss the induction, function, downstream signaling, and existing and potential interventions for targeting these cytokines or related signal pathways. We believe that a comprehensive understanding of CS in COVID-19 will help to develop better strategies to effectively control immunopathology in this disease and other infectious and inflammatory diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                JCMOHK
                Journal of Clinical Medicine
                JCM
                MDPI AG
                2077-0383
                February 2023
                January 19 2023
                : 12
                : 3
                : 798
                Article
                10.3390/jcm12030798
                4aa4f090-8e31-4495-ae0b-b4270db0bb30
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article