0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Iron biology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Iron is a fundamental element for biological life, from bacteria to humans. Iron is essential for cell function and survival, energy production and metabolism, whereas increased levels cause oxidative stress. It is also a constituent of haemoglobin and thus it is necessary for oxygen transportation through the body. Given these multiple functions, the regulation of iron metabolism is complex and tight coupled with oxygen homeostasis at tissue and cellular levels, thanks to the interaction with the hypoxia inducible factor system. In patients with chronic kidney disease (CKD), iron deficiency significantly contributes to anaemia development. This frequently overlaps with chronic inflammation, causing iron- restricted erythropoiesis. To add further complexity, metabolic hyperferritinemia may, on one hand, increase the risk for CKD and, on the other, overlaps with functional iron deficiency. Excessive intracellular iron in certain cell types during CKD can also mediate cellular death (called ferroptosis), and contribute to the pathogenesis of kidney damage, atherosclerosis and vascular calcifications. This review is aimed at broadening the perspective of iron metabolism in the setting of CKD not just as a contributor to anaemia in CKD patients, but also as an important player with an impact on cell metabolism, renal fibrosis and the cardiovascular system.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization.

          E Németh (2004)
          Hepcidin is a peptide hormone secreted by the liver in response to iron loading and inflammation. Decreased hepcidin leads to tissue iron overload, whereas hepcidin overproduction leads to hypoferremia and the anemia of inflammation. Ferroportin is an iron exporter present on the surface of absorptive enterocytes, macrophages, hepatocytes, and placental cells. Here we report that hepcidin bound to ferroportin in tissue culture cells. After binding, ferroportin was internalized and degraded, leading to decreased export of cellular iron. The posttranslational regulation of ferroportin by hepcidin may thus complete a homeostatic loop: Iron regulates the secretion of hepcidin, which in turn controls the concentration of ferroportin on the cell surface.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferric carboxymaltose in patients with heart failure and iron deficiency.

              Iron deficiency may impair aerobic performance. This study aimed to determine whether treatment with intravenous iron (ferric carboxymaltose) would improve symptoms in patients who had heart failure, reduced left ventricular ejection fraction, and iron deficiency, either with or without anemia. We enrolled 459 patients with chronic heart failure of New York Heart Association (NYHA) functional class II or III, a left ventricular ejection fraction of 40% or less (for patients with NYHA class II) or 45% or less (for NYHA class III), iron deficiency (ferritin level <100 microg per liter or between 100 and 299 microg per liter, if the transferrin saturation was <20%), and a hemoglobin level of 95 to 135 g per liter. Patients were randomly assigned, in a 2:1 ratio, to receive 200 mg of intravenous iron (ferric carboxymaltose) or saline (placebo). The primary end points were the self-reported Patient Global Assessment and NYHA functional class, both at week 24. Secondary end points included the distance walked in 6 minutes and the health-related quality of life. Among the patients receiving ferric carboxymaltose, 50% reported being much or moderately improved, as compared with 28% of patients receiving placebo, according to the Patient Global Assessment (odds ratio for improvement, 2.51; 95% confidence interval [CI], 1.75 to 3.61). Among the patients assigned to ferric carboxymaltose, 47% had an NYHA functional class I or II at week 24, as compared with 30% of patients assigned to placebo (odds ratio for improvement by one class, 2.40; 95% CI, 1.55 to 3.71). Results were similar in patients with anemia and those without anemia. Significant improvements were seen with ferric carboxymaltose in the distance on the 6-minute walk test and quality-of-life assessments. The rates of death, adverse events, and serious adverse events were similar in the two study groups. Treatment with intravenous ferric carboxymaltose in patients with chronic heart failure and iron deficiency, with or without anemia, improves symptoms, functional capacity, and quality of life; the side-effect profile is acceptable. (ClinicalTrials.gov number, NCT00520780). Copyright 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nephrology Dialysis Transplantation
                Oxford University Press (OUP)
                0931-0509
                1460-2385
                April 24 2024
                April 24 2024
                Article
                10.1093/ndt/gfae095
                4a94f440-658d-4c0c-9908-2e8dd74dd71b
                © 2024

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article