30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computational Protein Design Quantifies Structural Constraints on Amino Acid Covariation

      research-article
      1 , 1 , 2 , 3 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amino acid covariation, where the identities of amino acids at different sequence positions are correlated, is a hallmark of naturally occurring proteins. This covariation can arise from multiple factors, including selective pressures for maintaining protein structure, requirements imposed by a specific function, or from phylogenetic sampling bias. Here we employed flexible backbone computational protein design to quantify the extent to which protein structure has constrained amino acid covariation for 40 diverse protein domains. We find significant similarities between the amino acid covariation in alignments of natural protein sequences and sequences optimized for their structures by computational protein design methods. These results indicate that the structural constraints imposed by protein architecture play a dominant role in shaping amino acid covariation and that computational protein design methods can capture these effects. We also find that the similarity between natural and designed covariation is sensitive to the magnitude and mechanism of backbone flexibility used in computational protein design. Our results thus highlight the necessity of including backbone flexibility to correctly model precise details of correlated amino acid changes and give insights into the pressures underlying these correlations.

          Author Summary

          Proteins generally fold into specific three-dimensional structures to perform their cellular functions, and the presence of misfolded proteins is often deleterious for cellular and organismal fitness. For these reasons, maintenance of protein structure is thought to be one of the major fitness pressures acting on proteins. Consequently, the sequences of today's naturally occurring proteins contain signatures reflecting the constraints imposed by protein structure. Here we test the ability of computational protein design methods to recapitulate and explain these signatures. We focus on the physical basis of evolutionary pressures that act on interactions between amino acids in folded proteins, which are critical in determining protein structure and function. Such pressures can be observed from the appearance of amino acid covariation, where the amino acids at certain positions in protein sequences are correlated with each other. We find similar patterns of amino acid covariation in natural sequences and sequences optimized for their structures using computational protein design, demonstrating the importance of structural constraints in protein molecular evolution and providing insights into the structural mechanisms leading to covariation. In addition, these results characterize the ability of computational methods to model the precise details of correlated amino acid changes, which is critical for engineering new proteins with useful functions beyond those seen in nature.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Protein 3D Structure Computed from Evolutionary Sequence Variation

          The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic variants in normal and disease genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution.

            Strikingly consistent correlations between rates of coding-sequence evolution and gene expression levels are apparent across taxa, but the biological causes behind the selective pressures on coding-sequence evolution remain controversial. Here, we demonstrate conserved patterns of simple covariation between sequence evolution, codon usage, and mRNA level in E. coli, yeast, worm, fly, mouse, and human that suggest that all observed trends stem largely from a unified underlying selective pressure. In metazoans, these trends are strongest in tissues composed of neurons, whose structure and lifetime confer extreme sensitivity to protein misfolding. We propose, and demonstrate using a molecular-level evolutionary simulation, that selection against toxicity of misfolded proteins generated by ribosome errors suffices to create all of the observed covariation. The mechanistic model of molecular evolution that emerges yields testable biochemical predictions, calls into question the use of nonsynonymous-to-synonymous substitution ratios (Ka/Ks) to detect functional selection, and suggests how mistranslation may contribute to neurodegenerative disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Protein structure prediction using Rosetta.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                November 2013
                November 2013
                14 November 2013
                : 9
                : 11
                : e1003313
                Affiliations
                [1 ]Graduate Program in Bioinformatics, University of California San Francisco, San Francisco, California, United States of America
                [2 ]California Institute for Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California, United States of America
                [3 ]Department of Bioengineering and Therapeutic Science, University of California San Francisco, San Francisco, California, United States of America
                University of Texas at Austin, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NO TK. Performed the experiments: NO. Analyzed the data: NO TK. Contributed reagents/materials/analysis tools: NO. Wrote the paper: NO TK.

                Article
                PCOMPBIOL-D-13-01107
                10.1371/journal.pcbi.1003313
                3828131
                24244128
                4a6def91-25c0-4499-84c2-0748faceec32
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 June 2013
                : 20 September 2013
                Page count
                Pages: 17
                Funding
                This research was supported by grants from the National Science Foundation (NSF) to TK (NSF MCB-0744541 and NSF DBI-1262182), the Synthetic Biology Engineering Research Center (NSF EEC-0540879, J. Keasling, PI) and an NSF Graduate Research Fellowship to NO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article