45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Systematic comparison of CRISPR-Cas9 and RNAi screens for essential genes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We compare the ability of shRNA and CRISPR/Cas9 screens to identify essential genes in the human chronic myelogenous leukemia cell line K562. We find that the precision of the two libraries in detecting essential genes is similar and that combining data from both screens improves performance. Notably, results from the two screens show little correlation, which can be partially explained by identification of distinct essential biological processes with each technology.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Expression profiling reveals off-target gene regulation by RNAi.

          RNA interference is thought to require near-identity between the small interfering RNA (siRNA) and its cognate mRNA. Here, we used gene expression profiling to characterize the specificity of gene silencing by siRNAs in cultured human cells. Transcript profiles revealed siRNA-specific rather than target-specific signatures, including direct silencing of nontargeted genes containing as few as eleven contiguous nucleotides of identity to the siRNA. These results demonstrate that siRNAs may cross-react with targets of limited sequence similarity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.

            Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains

              CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-induced mutations to the 5’ exons of candidate genes 1–5 , but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We show that the magnitude of negative selection reports the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
                Bookmark

                Author and article information

                Journal
                9604648
                20305
                Nat Biotechnol
                Nat. Biotechnol.
                Nature biotechnology
                1087-0156
                1546-1696
                1 May 2016
                09 May 2016
                June 2016
                09 November 2016
                : 34
                : 6
                : 634-636
                Affiliations
                [1 ]Department of Genetics, Stanford University, Stanford, CA, USA
                [2 ]Department of Chemistry, Stanford University, Stanford, CA, USA
                [3 ]Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
                Author notes
                [4 ]Corresponding Author: bassik@ 123456stanford.edu
                Article
                NIHMS777404
                10.1038/nbt.3567
                4900911
                27159373
                4a61eb74-4618-4075-beba-99a006c5e7b0

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Biotechnology
                Biotechnology

                Comments

                Comment on this article