1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting Personalized Responses to Dietary Fiber Interventions: Opportunities for Modulation of the Gut Microbiome to Improve Health

      1 , 2 , 2 , 3 , 2 , 3
      Annual Review of Food Science and Technology
      Annual Reviews

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inadequate dietary fiber consumption has become common across industrialized nations, accompanied by changes in gut microbial composition and a dramatic increase in chronic metabolic diseases. The human gut microbiome harbors genes that are required for the digestion of fiber, resulting in the production of end products that mediate gastrointestinal and systemic benefits to the host. Thus, the use of fiber interventions has attracted increasing interest as a strategy to modulate the gut microbiome and improve human health. However, considerable interindividual differences in gut microbial composition have resulted in variable responses toward fiber interventions. This variability has led to observed nonresponder individuals and highlights the need for personalized approaches to effectively redirect the gut ecosystem. In this review, we summarize strategies used to address the responder and nonresponder phenomenon in dietary fiber interventions and propose a targeted approach to identify predictive features based on knowledge of fiber metabolism and machine learning approaches.

          Related collections

          Most cited references187

          • Record: found
          • Abstract: not found
          • Article: not found

          PICRUSt2 for prediction of metagenome functions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbiota in human metabolic health and disease

            Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enterotypes of the human gut microbiome.

              Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
                Bookmark

                Author and article information

                Journal
                Annual Review of Food Science and Technology
                Annu. Rev. Food Sci. Technol.
                Annual Reviews
                1941-1413
                1941-1421
                March 27 2023
                March 27 2023
                : 14
                : 1
                : 157-182
                Affiliations
                [1 ]Complex Biosystems, University of Nebraska, Lincoln, Nebraska, USA
                [2 ]Nebraska Food for Health Center, University of Nebraska, Lincoln, Nebraska, USA
                [3 ]Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA;
                Article
                10.1146/annurev-food-060721-015516
                36446139
                499c2b3b-59c8-438c-9734-a0cd2687b10f
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article