5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.

          Graphical abstract

          Highlights

          • Models for assessing drug penetration into tumors are compared.

          • Strategies for structural transformation of nanomedicine in the tumor environment are comprehensively elaborated.

          • Strategies to overcome tumor barriers for deep penetration are provided.

          • Active tumor penetration is introduced.

          • The potential and hurdles of nanomedicine in tumor therapies are concluded.

          Related collections

          Most cited references308

          • Record: found
          • Abstract: found
          • Article: not found

          Principles of nanoparticle design for overcoming biological barriers to drug delivery.

          Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis.

            Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tumor microenvironment

              A tumor is not simply a group of cancer cells, but rather a heterogeneous collection of infiltrating and resident host cells, secreted factors and extracellular matrix. Tumor cells stimulate significant molecular, cellular and physical changes within their host tissues to support tumor growth and progression. An emerging tumor microenvironment is a complex and continuously evolving entity. The composition of the tumor microenvironment varies between tumor types, but hallmark features include immune cells, stromal cells, blood vessels, and extracellular matrix. It is believed that the "tumor microenvironment is not just a silent bystander, but rather an active promoter of cancer progression" (Truffi et al., 2020). Early in tumor growth, a dynamic and reciprocal relationship develops between cancer cells and components of the tumor microenvironment that supports cancer cell survival, local invasion and metastatic dissemination. To overcome a hypoxic and acidic microenvironment, the tumor microenvironment coordinates a program that promotes angiogenesis to restore oxygen and nutrient supply and remove metabolic waste. Tumors become infiltrated with diverse adaptive and innate immune cells that can perform both pro- and anti- tumorigenic functions (Figure 1). An expanding literature on the tumor microenvironment has identified new targets within it for therapeutic intervention.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioact Mater
                Bioact Mater
                Bioactive Materials
                KeAi Publishing
                2452-199X
                26 October 2023
                February 2024
                26 October 2023
                : 32
                : 445-472
                Affiliations
                [a ]Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
                [b ]Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
                [c ]Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
                Author notes
                []Corresponding author. Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China. luokui@ 123456scu.edu.cn
                [1]

                These authors contributed equally: Xiaoding Shen and Dayi Pan.

                Article
                S2452-199X(23)00332-8
                10.1016/j.bioactmat.2023.10.017
                10641097
                37965242
                497ba13c-74c5-40e0-84ac-a08f85e316c7
                © 2023 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 August 2023
                : 18 October 2023
                : 18 October 2023
                Categories
                Review Article

                nanomedicine,tumor penetration,penetration models,tumor microenvironment,organelle-affinitive transfer

                Comments

                Comment on this article