13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of Morphology and Electronic Structure of FeCoNi Layered Double Hydroxides for Highly Active and Stable Water Oxidization Catalysts

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Highly efficient electrocatalysts for the oxygen evolution reaction (OER) are very important for various energy storage and conversion systems such as water splitting devices and metal‐air batteries. However, developing OER electrocatalysts with high activity and excellent stability at a high current density remains a considerable challenge. Herein, a facile room‐temperature‐stirring strategy is described to obtain FeCoNi layered double hydroxide nanocages (FeCoNi‐LDHs) using a metal–organic framework as a precursor. The FeCoNi‐LDHs have hollow features, while their walls are assembled with ultrathin layered hydroxide nanosheets. By designing a unique structure and tuning the composition, high activity and robust long‐term stability of the FeCoNi‐LDHs for the OER outperform IrO 2, used as the reference catalyst. The as‐obtained high electrochemically active surface area and the decreased transfer resistance are ascribed to the significantly improved activity. Density functional theory calculations suggest that the introduction of Fe can fine‐tune the electronic structure and decrease the Gibbs free energy difference of the rate‐determining step (ΔG 3), improving the intrinsic activity of FeCoNi‐LDHs toward the OER. Furthermore, the proposed room‐temperature‐stirring strategy can be easily scaled up to more than 10 grams of nanocages through a single batch reaction process, demonstrating the large‐scale applicability of the catalysts.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

            Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism.

              Cobalt oxides and (oxy)hydroxides have been widely studied as electrocatalysts for the oxygen evolution reaction (OER). For related Ni-based materials, the addition of Fe dramatically enhances OER activity. The role of Fe in Co-based materials is not well-documented. We show that the intrinsic OER activity of Co(1-x)Fe(x)(OOH) is ∼100-fold higher for x ≈ 0.6-0.7 than for x = 0 on a per-metal turnover frequency basis. Fe-free CoOOH absorbs Fe from electrolyte impurities if the electrolyte is not rigorously purified. Fe incorporation and increased activity correlate with an anodic shift in the nominally Co(2+/3+) redox wave, indicating strong electronic interactions between the two elements and likely substitutional doping of Fe for Co. In situ electrical measurements show that Co(1-x)Fe(x)(OOH) is conductive under OER conditions (∼0.7-4 mS cm(-1) at ∼300 mV overpotential), but that FeOOH is an insulator with measurable conductivity (2.2 × 10(-2) mS cm(-1)) only at high overpotentials >400 mV. The apparent OER activity of FeOOH is thus limited by low conductivity. Microbalance measurements show that films with x ≥ 0.54 (i.e., Fe-rich) dissolve in 1 M KOH electrolyte under OER conditions. For x < 0.54, the films appear chemically stable, but the OER activity decreases by 16-62% over 2 h, likely due to conversion into denser, oxide-like phases. We thus hypothesize that Fe is the most-active site in the catalyst, while CoOOH primarily provides a conductive, high-surface area, chemically stabilizing host. These results are important as Fe-containing Co- and Ni-(oxy)hydroxides are the fastest OER catalysts known.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Energy Materials
                Advanced Energy Materials
                Wiley
                1614-6832
                1614-6840
                December 2021
                November 16 2021
                December 2021
                : 11
                : 48
                Affiliations
                [1 ] Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
                [2 ] College of Physics and Optoelectronic Engineering Harbin Engineering University Harbin 150001 China
                [3 ] Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Science Heilongjiang University Harbin 150080 China
                [4 ] Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
                [5 ] College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
                [6 ] School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
                Article
                10.1002/aenm.202102141
                495b4079-bd33-4524-8811-7c9ca5fb1fbb
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article