45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sonic Hedgehog Signaling in Limb Development

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of dinosaurs.

          The ascendancy of dinosaurs on land near the close of the Triassic now appears to have been as accidental and opportunistic as their demise and replacement by therian mammals at the end of the Cretaceous. The dinosaurian radiation, launched by 1-meter-long bipeds, was slower in tempo and more restricted in adaptive scope than that of therian mammals. A notable exception was the evolution of birds from small-bodied predatory dinosaurs, which involved a dramatic decrease in body size. Recurring phylogenetic trends among dinosaurs include, to the contrary, increase in body size. There is no evidence for co-evolution between predators and prey or between herbivores and flowering plants. As the major land masses drifted apart, dinosaurian biogeography was molded more by regional extinction and intercontinental dispersal than by the breakup sequence of Pangaea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developmental basis of sexually dimorphic digit ratios.

            Males and females generally have different finger proportions. In males, digit 2 is shorter than digit 4, but in females digit 2 is the same length or longer than digit 4. The second- to fourth-digit (2D:4D) ratio correlates with numerous sexually dimorphic behavioral and physiological conditions. Although correlational studies suggest that digit ratios reflect prenatal exposure to androgen, the developmental mechanism underlying sexually dimorphic digit development remains unknown. Here we report that the 2D:4D ratio in mice is controlled by the balance of androgen to estrogen signaling during a narrow window of digit development. Androgen receptor (AR) and estrogen receptor α (ER-α) activity is higher in digit 4 than in digit 2. Inactivation of AR decreases growth of digit 4, which causes a higher 2D:4D ratio, whereas inactivation of ER-α increases growth of digit 4, which leads to a lower 2D:4D ratio. We also show that addition of androgen has the same effect as inactivation of ER and that addition of estrogen mimics the reduction of AR. Androgen and estrogen differentially regulate the network of genes that controls chondrocyte proliferation, leading to differential growth of digit 4 in males and females. These studies identify previously undescribed molecular dimorphisms between male and female limb buds and provide experimental evidence that the digit ratio is a lifelong signature of prenatal hormonal exposure. Our results also suggest that the 2D:4D ratio can serve as an indicator of disrupted endocrine signaling during early development, which may aid in the identification of fetal origins of adult diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sonic hedgehog mediates the polarizing activity of the ZPA.

              The zone of polarizing activity (ZPA) is a region at the posterior margin of the limb bud that induces mirror-image duplications when grafted to the anterior of a second limb. We have isolated a vertebrate gene, Sonic hedgehog, related to the Drosophila segment polarity gene hedgehog, which is expressed specifically in the ZPA and in other regions of the embryo, that is capable of polarizing limbs in grafting experiments. Retinoic acid, which can convert anterior limb bud tissue into tissue with polarizing activity, concomitantly induces Sonic hedgehog expression in the anterior limb bud. Implanting cells that express Sonic hedgehog into anterior limb buds is sufficient to cause ZPA-like limb duplications. Like the ZPA, Sonic hedgehog expression leads to the activation of Hox genes. Sonic hedgehog thus appears to function as the signal for antero-posterior patterning in the limb.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                28 February 2017
                2017
                : 5
                : 14
                Affiliations
                [1] 1Department of Biology and Biochemistry, University of Bath Bath, UK
                [2] 2Department of Biomedical Science, The Bateson Centre, University of Sheffield Western Bank, Sheffield, UK
                Author notes

                Edited by: Andrea Erika Münsterberg, University of East Anglia, UK

                Reviewed by: Megan Davey, University of Edinburgh, UK; Robert Hill, University of Edinburgh, UK; Susan Mackem, National Cancer Institute, USA

                *Correspondence: Cheryll Tickle cat24@ 123456bath.ac.uk

                This article was submitted to Signaling, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2017.00014
                5328949
                28293554
                493c2156-82c6-486e-a87a-a482b2af655c
                Copyright © 2017 Tickle and Towers.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 December 2016
                : 08 February 2017
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 182, Pages: 19, Words: 19274
                Funding
                Funded by: Wellcome Trust 10.13039/100004440
                Award ID: 202756/Z/16/Z
                Categories
                Cell and Developmental Biology
                Review

                sonic hedgehog,limb,digits,mouse,chick,positional information
                sonic hedgehog, limb, digits, mouse, chick, positional information

                Comments

                Comment on this article