13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum Autofluorescence and Biochemical Markers in Athlete's Response to Strength Effort in Normobaric Hypoxia: A Preliminary Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human organism has the ability to adapt to hypoxia conditions. Training in hypoxia is used in sport to improve the efficiency of athletes; however, type of training affects the direction and scope of this process. Therefore, in this study, the usefulness of serum fluorescence spectroscopy to study the assessment of athlete's response to strength effort in hypoxia is considered in comparison with biochemical assay. Six resistance-trained male subjects took part in a research experiment. They performed barbell squats in simulated normobaric hypoxic conditions with deficiency of oxygen 11.3%, 13% 14.3% compared to 21% in normoxic conditions. Fluorescence intensity of tyrosine revealed high sensitivity on strength effort whereas tryptophan was more dependent on high altitude. Changes in emission in the visible region are associated with altering cell metabolism dependent on high altitude as well as strength training and endurance training. Significant changes in serum fluorescence intensity with relatively weak modifications in biochemical assay at 3000 m above sea level (ASL) were observed. Training at 5000 m ASL caused changes in fluorescence parameters towards the normobaric specific values, and pronounced decreases of lactate level and kinase creatine activity were observed. Such modifications of fluorescence and biochemical assay indicate increased adaptation of the organism to effort in oxygen-deficient conditions at 5000 m ASL, unlike 3000 m ASL. Fluorescence spectroscopy study of serum accompanied by biochemical assay can contribute to the understanding of metabolic regulation and the physiological response to hypoxia. The results of serum autofluorescence during various concepts of altitude training may be a useful method to analyze individual response to acute and chronic hypoxia. An endogenous tryptophan could be exploited as intrinsic biomarker in autofluorescence studies. However, these issues require further research.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions.

          Hypoxia-inducible factor (HIF-1) is an oxygen-dependent transcriptional activator, which plays crucial roles in the angiogenesis of tumors and mammalian development. HIF-1 consists of a constitutively expressed HIF-1beta subunit and one of three subunits (HIF-1alpha, HIF-2alpha or HIF-3alpha). The stability and activity of HIF-1alpha are regulated by various post-translational modifications, hydroxylation, acetylation, and phosphorylation. Therefore, HIF-1alpha interacts with several protein factors including PHD, pVHL, ARD-1, and p300/CBP. Under normoxia, the HIF-1alpha subunit is rapidly degraded via the von Hippel-Lindau tumor suppressor gene product (pVHL)- mediated ubiquitin-proteasome pathway. The association of pVHL and HIF-1alpha under normoxic conditions is triggered by the hydroxylation of prolines and the acetylation of lysine within a polypeptide segment known as the oxygen-dependent degradation (ODD) domain. On the contrary, in the hypoxia condition, HIF-1alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Eventually, HIF-1 acts as a master regulator of numerous hypoxia-inducible genes under hypoxic conditions. The target genes of HIF-1 are especially related to angiogenesis, cell proliferation/survival, and glucose/iron metabolism. Moreover, it was reported that the activation of HIF-1alpha is closely associated with a variety of tumors and oncogenic pathways. Hence, the blocking of HIF-1a itself or HIF-1alpha interacting proteins inhibit tumor growth. Based on these findings, HIF-1 can be a prime target for anticancer therapies. This review summarizes the molecular mechanism of HIF-1a stability, the biological functions of HIF-1 and its potential applications of cancer therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exercise-Induced Muscle Damage in Humans

            Exercise-induced muscle injury in humans frequently occurs after unaccustomed exercise, particularly if the exercise involves a large amount of eccentric (muscle lengthening) contractions. Direct measures of exercise-induced muscle damage include cellular and subcellular disturbances, particularly Z-line streaming. Several indirectly assessed markers of muscle damage after exercise include increases in T2 signal intensity via magnetic resonance imaging techniques, prolonged decreases in force production measured during both voluntary and electrically stimulated contractions (particularly at low stimulation frequencies), increases in inflammatory markers both within the injured muscle and in the blood, increased appearance of muscle proteins in the blood, and muscular soreness. Although the exact mechanisms to explain these changes have not been delineated, the initial injury is ascribed to mechanical disruption of the fiber, and subsequent damage is linked to inflammatory processes and to changes in excitation-contraction coupling within the muscle. Performance of one bout of eccentric exercise induces an adaptation such that the muscle is less vulnerable to a subsequent bout of eccentric exercise. Although several theories have been proposed to explain this "repeated bout effect," including altered motor unit recruitment, an increase in sarcomeres in series, a blunted inflammatory response, and a reduction in stress-susceptible fibers, there is no general agreement as to its cause. In addition, there is controversy concerning the presence of sex differences in the response of muscle to damage-inducing exercise. In contrast to the animal literature, which clearly shows that females experience less damage than males, research using human studies suggests that there is either no difference between men and women or that women are more prone to exercise-induced muscle damage than are men.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biochemical markers of muscular damage.

              Muscle tissue may be damaged following intense prolonged training as a consequence of both metabolic and mechanical factors. Serum levels of skeletal muscle enzymes or proteins are markers of the functional status of muscle tissue, and vary widely in both pathological and physiological conditions. Creatine kinase, lactate dehydrogenase, aldolase, myoglobin, troponin, aspartate aminotransferase, and carbonic anhydrase CAIII are the most useful serum markers of muscle injury, but apoptosis in muscle tissues subsequent to strenuous exercise may be also triggered by increased oxidative stress. Therefore, total antioxidant status can be used to evaluate the level of stress in muscle by other markers, such as thiobarbituric acid-reactive substances, malondialdehyde, sulfhydril groups, reduced glutathione, oxidized glutathione, superoxide dismutase, catalase and others. As the various markers provide a composite picture of muscle status, we recommend using more than one to provide a better estimation of muscle stress.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2019
                6 December 2019
                : 2019
                : 5201351
                Affiliations
                1Faculty of Science and Technology, University of Sillesia in Katowice, Chorzów 41-500, Poland
                2Department of Physiological and Medical Sciences, Department of Biochemistry, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
                3Department of Kinesiology, Institute of Sport, Warsaw 01-982, Poland
                Author notes

                Academic Editor: Giuseppe Piccione

                Author information
                https://orcid.org/0000-0003-1427-9682
                https://orcid.org/0000-0002-5173-9564
                Article
                10.1155/2019/5201351
                6925827
                31886223
                4932bff7-08c8-4b9b-8896-0dae5150fccf
                Copyright © 2019 Zofia Drzazga et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 August 2019
                : 11 November 2019
                : 18 November 2019
                Funding
                Funded by: University of Silesia
                Categories
                Research Article

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content309

                Cited by2

                Most referenced authors505