0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computational Exploration of Single-Nucleotide Polymorphisms in the Human hRAS Gene: Implications and Insights

      research-article
      1 , 1 , 1 , 1 ,
      ,
      Cureus
      Cureus
      single-nucleotide polymorphism (snp), bioinformatic tools, amino acid, hras gene, computational biology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A group of genes called oncogenes includes the Harvey rat sarcoma virus ( hRAS) gene. Along with hRAS, Kirsten rat sarcoma viral oncogene homolog ( kRAS) and neuroblastoma RAS viral oncogene homolog ( nRAS) genes belong to the Rat sarcoma (Ras) family of oncogenes. These three genes result in Rho guanosine triphosphate hydrolases (GTPases) as their protein product. Instructions for producing the protein hRAS, which is mainly involved in controlling cell division, are provided by the hRAS gene. The hRAS protein transfers signals from outside through a process called signal transduction. Because the hRAS protein is a GTPase, it changes the chemical guanosine-5'-triphosphate (GTP) into guanosine diphosphate (GDP). GTP and GDP molecules operate as switches to turn on and off the hRAS. This study aimed to anticipate the structure and stability of the protein resulting from missense single-nucleotide polymorphisms (SNPs) in the human hRAS genes.

          Methodology

          To investigate the possible negative effects associated with these SNPs, bioinformatic analysis is typically essential. The following tools were employed for forecasting harmful SNPs: Scale-Invariant Feature Transform (SIFT), Protein Analysis Through Evolutionary Relationships (PANTHER), non-synonymous SNP by Protein Variation Effect Analyzer (PROVEAN), and non-synonymous SNP by Single Nucleotide Polymorphism Annotation Platform (SNAP).

          Results

          The present study identified a total of 11 SNPs using the SIFT approach, which were shown to have functional significance. Only two of these 11 SNPs were determined to be tolerable, whereas nine were shown to be detrimental. Among the 11 SNPs analyzed, seven (Q61H, Q99H, K117R, A121D, A146V, R169W, R169Q) were classified as possibly damaging,and four (G13V, Q22K, Q61K, Q13V) were categorized as probably benign according to the predictions made by PANTHER tools. Therefore, the seven SNPs were identified as high-risk SNPs.

          Conclusions

          Given that SNPs have the potential to be candidates for cellular alterations brought on by mutations that are associated with cancer, this study provides vital information about how SNPs might be utilized as a diagnostic marker for cancer.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          SIFT: Predicting amino acid changes that affect protein function.

          P C Ng (2003)
          Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.

            The effect of genetic mutation on phenotype is of significant interest in genetics. The type of genetic mutation that causes a single amino acid substitution (AAS) in a protein sequence is called a non-synonymous single nucleotide polymorphism (nsSNP). An nsSNP could potentially affect the function of the protein, subsequently altering the carrier's phenotype. This protocol describes the use of the 'Sorting Tolerant From Intolerant' (SIFT) algorithm in predicting whether an AAS affects protein function. To assess the effect of a substitution, SIFT assumes that important positions in a protein sequence have been conserved throughout evolution and therefore substitutions at these positions may affect protein function. Thus, by using sequence homology, SIFT predicts the effects of all possible substitutions at each position in the protein sequence. The protocol typically takes 5-20 min, depending on the input. SIFT is available as an online tool (http://sift.jcvi.org).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PANTHER: a library of protein families and subfamilies indexed by function.

              In the genomic era, one of the fundamental goals is to characterize the function of proteins on a large scale. We describe a method, PANTHER, for relating protein sequence relationships to function relationships in a robust and accurate way. PANTHER is composed of two main components: the PANTHER library (PANTHER/LIB) and the PANTHER index (PANTHER/X). PANTHER/LIB is a collection of "books," each representing a protein family as a multiple sequence alignment, a Hidden Markov Model (HMM), and a family tree. Functional divergence within the family is represented by dividing the tree into subtrees based on shared function, and by subtree HMMs. PANTHER/X is an abbreviated ontology for summarizing and navigating molecular functions and biological processes associated with the families and subfamilies. We apply PANTHER to three areas of active research. First, we report the size and sequence diversity of the families and subfamilies, characterizing the relationship between sequence divergence and functional divergence across a wide range of protein families. Second, we use the PANTHER/X ontology to give a high-level representation of gene function across the human and mouse genomes. Third, we use the family HMMs to rank missense single nucleotide polymorphisms (SNPs), on a database-wide scale, according to their likelihood of affecting protein function.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                28 January 2024
                January 2024
                : 16
                : 1
                : e53119
                Affiliations
                [1 ] Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
                Author notes
                Article
                10.7759/cureus.53119
                10899094
                38420094
                493205de-d561-43d9-b010-3ff1d1ad5c86
                Copyright © 2024, Dakshitha et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 December 2023
                : 28 January 2024
                Categories
                Oncology
                Healthcare Technology
                Therapeutics

                single-nucleotide polymorphism (snp),bioinformatic tools,amino acid,hras gene,computational biology

                Comments

                Comment on this article