10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery.

          Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria.

            Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators

              The environment is increasingly being recognized for the role it might play in the global spread of clinically relevant antibiotic resistance. Environmental regulators monitor and control many of the pathways responsible for the release of resistance-driving chemicals into the environment (e.g., antimicrobials, metals, and biocides). Hence, environmental regulators should be contributing significantly to the development of global and national antimicrobial resistance (AMR) action plans. It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of our poor fundamental understanding of many of the key issues. Here, we aim to present the problem with AMR in the environment through the lens of an environmental regulator, using the Environment Agency (England’s regulator) as an example from which parallels can be drawn globally. The issues that are pertinent to environmental regulators are drawn out to answer: What are the drivers and pathways of AMR? How do these relate to the normal work, powers and duties of environmental regulators? What are the knowledge gaps that hinder the delivery of environmental protection from AMR? We offer several thought experiments for how different mitigation strategies might proceed. We conclude that: (1) AMR Action Plans do not tackle all the potentially relevant pathways and drivers of AMR in the environment; and (2) AMR Action Plans are deficient partly because the science to inform policy is lacking and this needs to be addressed.
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                01 June 2020
                June 2020
                : 8
                : 6
                : 833
                Affiliations
                UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; ferrand.aurelie@ 123456hotmail.fr (A.F.); julia.vergalli@ 123456univ-amu.fr (J.V.); jean-marie.pages@ 123456univ-amu.fr (J.-M.P.)
                Author notes
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-7092-7977
                https://orcid.org/0000-0001-5040-8379
                Article
                microorganisms-08-00833
                10.3390/microorganisms8060833
                7355843
                32492979
                492d3ae3-5442-4b8b-bc0a-f9bc0ab62823
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 May 2020
                : 31 May 2020
                Categories
                Review

                antibiotic resistance,enterobacteriaceae,envelope permeability,efflux pump,esr,global and local regulators,membrane protein,porins,tcs

                Comments

                Comment on this article