42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelin-1 enhances the melanogenesis via MITF-GPNMB pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelin-1 (ET-1) plays an indispensable role in epidermal pigmentation in hyperpigmentary disorders due to a central role in melanogenesis. Nevertheless, precise mechanism involved in ET-1-induced hyperpigmentation is still undefined. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB) is a key element in melanosome formation. Therefore, we speculated that GPNMB was correlated with ET-1-induced pigmentation. After culturing with ET-1, melanin synthesis was significantly up-regulated, accompanying with increased expression of GPNMB and microphthalmia-associated transcription factor (MITF). Total number of melanosomes and melanin synthesis were sharply reduced via GPNMB-siRNA transfection, indicating ET-1-induced pigmentation by GPNMB-dependent manner. Furthermore, MITFsiRNA transfection strikingly inhibited GPNMB expression and the melanogenesis, and this suppression failed to be alleviated by ET-1 stimulation. All of these results demonstrated that ET-1 can trigger melanogenesis via the MITF-regulated GPNMB pathway. Taken together, these findings will provide a new explanation of how ET-1 induces hyperpigmentation, and possibly supply a new strategy for cosmetic studies. [BMB Reports 2013; 46(7): 364-369]

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes.

          Germline mutations at loci encoding the transcription factor Microphthalmia (Mi), the cytokine receptor c-Kit, or its ligand Steel factor (S1) result in strikingly similar defects in mast cell and melanocyte development. Here we describe a biochemical link between Kit signalling and the activity of Mi. Stimulation of melanoma cells with S1 results in activation of MAP kinase, which in turn phosphorylates Mi at a consensus target serine. This phosphorylation upregulates Mi transactivation of the tyrosinase pigmentation gene promoter. In addition to modulating pigment production, such signalling may regulate the expression of genes essential for melanocyte survival and development. The pathway represents a new application of the general MAP kinase machinery in transducing a signal between a tissue-specific receptor at the cell surface and a tissue-specific transcription factor in the nucleus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            "Transcription physiology" of pigment formation in melanocytes: central role of MITF.

            Melanin production is the primary mechanism protecting human skin against the UV light-induced damage. The polymeric compound melanin is synthesized within melanocytes in the specialized subcellular organelles, termed melanosomes, which are then transferred to surrounding keratinocytes. The genes for melanin synthesis and deposition are coordinately expressed in melanocytes. The transcription factor MITF, which has been reported to activate more than 25 genes in pigment cells, has emerged as an essential regulator not only for melanocyte development, proliferation and survival, but also for the expression of enzymes and structural proteins ensuring the production of melanin. MITF is a transcriptional activator of several genes which encode melanosome-localized proteins involved both in melanin synthesis and in melanosome biogenesis and transport, including genes whose mutations are associated with human oculocutaneous and ocular forms of albinism. Here, we outline the mechanisms of transcriptional regulation of genes associated with the biosynthesis of melanin in melanocytes and melanoma cells. MITF is crucial in this process, while several other factors seem to have only an auxiliary role to play under specific circumstances.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of melanogenesis--controversies and new concepts.

              Despite many efforts, regulation of skin and hair pigmentation is still not fully understood. This article focuses mainly on controversial aspects in pigment cell biology which have emerged over the last decade. The central role of tyrosinase as the key enzyme in initiation of melanogenesis has been closely associated with the 6BH4 dependent phenylalanine hydroxylase (PAH) and tyrosine hydroxylase isoform I (THI) providing evidence for an old concept of the three enzyme theory in the initiation of the pigmentation process. In this context, it is noteworthy that intracellular L-phenylalanine uptake and turnover to L-tyrosine via PAH is vital for substrate supply of THI and tyrosinase. While PAH acts in the cytosol of melanocytes, THI and tyrosinase are sitting side by side in the melanosomal membrane. THI at low pH provides L-3,4-hydroxyphenylalanine L-DOPA which in turn is required for activation of met-tyrosinase. After an intramelanosomal pH change, possibly by the p-protein, has taken place, tyrosinase is subject to control by 6/7BH4 and the proopiomelanocortin (POMC) peptides alpha-MSH melanocyte stimulating hormone and beta-MSH in a receptor independent manner. cAMP is required for the activation of microphthalmia-associated transcription factor to induce expression of tyrosinase, for transcription of THI and for activation of PAH. The redundancy of the cAMP signal is discussed. Finally, we propose a novel mechanism involving H2O2 in the regulation of tyrosinase via p53 through transcription of hepatocyte nuclear factor 1alpha which in turn can also affect the POMC response.
                Bookmark

                Author and article information

                Journal
                BMB Rep
                BMB Rep
                ksbmb
                BMB reports
                Korean Society for Biochemistry and Molecular Biology
                1976-6696
                1976-670X
                July 2013
                : 46
                : 7
                : 364-369
                Affiliations
                [1 ]Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032
                [2 ]Department of Dermatology, The Air Force General Hospital of PLA, Beijing 100142, China
                Author notes
                [#,* ]Corresponding author. +86-10-66928074; Fax: +86-10-68485082; E-mail: weiliuair@ 123456gmail.com
                [# ]Both of these two authors contributed equally to this work.
                Article
                BMB-46-364
                10.5483/BMBRep.2013.46.7.250
                4133913
                23884103
                48e5ce7f-f516-4613-9e4f-01d5873979b3
                Copyright © 2013, Korean Society for Biochemistry and Molecular Biology

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 November 2012
                : 26 December 2012
                : 22 January 2013
                Categories
                Articles

                endothelin-1,gpnmb,melanogenesis,mitf,pigment disease
                endothelin-1, gpnmb, melanogenesis, mitf, pigment disease

                Comments

                Comment on this article