38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maintenance of Hepatic Functions in Primary Human Hepatocytes Cultured on Xeno-Free and Chemical Defined Human Recombinant Laminins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Refined methods for maintaining specific functions of isolated hepatocytes under xeno-free and chemical defined conditions is of great importance for the development of hepatocyte research and regenerative therapy. Laminins, a large family of heterotrimeric basement membrane adhesion proteins, are highly cell and tissue type specific components of the extracellular matrix and strongly influence the behavior and function of associated cells and/or tissues. However, detailed biological functions of many laminin isoforms are still to be evaluated. In this study, we determined the distribution of laminin isoforms in human liver tissue and isolated primary human hepatocytes by western blot analysis, and investigated the efficacy of different human recombinant laminin isoforms on hepatic functions during culture. Protein expression s of laminin-chain α2, α3, α4, β1, β3, γ1, and γ2 were detected in both isolated human hepatocytes and liver tissue. No α1 and α5 expression could be detected in liver tissue or hepatocytes. Hepatocytes were isolated from five different individual livers, and cultured on human recombinant laminin isoforms -111, -211, -221, -332, -411, -421, -511, and -521 (Biolamina AB), matrigel (extracted from Engelbreth-Holm-Swarm sarcoma), or collagen type IV (Collagen). Hepatocytes cultured on laminin showed characteristic hexagonal shape in a flat cell monolayer. Viability, double stranded DNA concentration, and Ki67 expression for hepatocytes cultured for six days on laminin were comparable to those cultured on EHS and Collagen. Hepatocytes cultured on laminin also displayed production of human albumin, alpha-1-antitrypsin, bile acids, and gene expression of liver-enriched factors, such as hepatocyte nuclear factor 4 alpha, glucose-6-phosphate, cytochrome P450 3A4, and multidrug resistance-associated protein 2. We conclude that all forms of human recombinant laminin tested maintain cell viability and liver-specific functions of primary human hepatocytes, and that recombinant laminin is a promising xeno-free and chemical defined strategy for preservation of hepatocyte specific function in vitro.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          A simplified laminin nomenclature.

          A simplification of the laminin nomenclature is presented. Laminins are multidomain heterotrimers composed of alpha, beta and gamma chains. Previously, laminin trimers were numbered with Arabic numerals in the order discovered, that is laminins-1 to -5. We introduce a new identification system for a trimer using three Arabic numerals, based on the alpha, beta and gamma chain numbers. For example, the laminin with the chain composition alpha5beta1gamma1 is termed laminin-511, and not laminin-10. The current practice is also to mix two overlapping domain and module nomenclatures. Instead of the older Roman numeral nomenclature and mixed nomenclature, all modules are now called domains. Some domains are renamed or renumbered. Laminin epidermal growth factor-like (LE) domains are renumbered starting at the N-termini, to be consistent with general protein nomenclature. Domain IVb of alpha chains is named laminin 4a (L4a), domain IVa of alpha chains is named L4b, domain IV of gamma chains is named L4, and domain IV of beta chains is named laminin four (LF). The two coiled-coil domains I and II are now considered one laminin coiled-coil domain (LCC). The interruption in the coiled-coil of beta chains is named laminin beta-knob (Lbeta) domain. The chain origin of a domain is specified by the chain nomenclature, such as alpha1L4a. The abbreviation LM is suggested for laminin. Otherwise, the nomenclature remains unaltered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional diversity of laminins.

            Laminins are a large family of conserved, multidomain trimeric basement membrane proteins that contribute to the structure of extracellular matrix and influence the behavior of associated cells, such as adhesion, differentiation, migration, phenotype stability, and resistance to anoikis. In lower organisms such as Hydra there is only one isoform of laminin, but higher organisms have at least 16 trimeric isoforms with varying degrees of cell/tissue specificity. In vitro protein and cell culture studies, gene manipulation in animals, and laminin gene mutations in human diseases have provided insight into the specific functions of some laminins, but the biological roles of many isoforms are still largely unexplored, mainly owing to difficulties in isolating them in pure form from tissues or cells. In this review, we elucidate the evolution of laminins, describe their molecular complexity, and explore the current knowledge of their diversity and functional aspects, including laminin-mediated signaling via membrane receptors, in vitro cell biology, and involvement in various tissues gained from animal model and human disease studies. The potential use of laminins in cell biology research and biotechnology is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Laminins.

              Laminins are cell adhesion molecules that comprise a family of glycoproteins found predominantly in basement membranes, which are the thin sheets of extracellular matrix that underlie epithelial and endothelial cells and surround muscle cells, Schwann cells, and fat cells. Many laminins self-assemble to form networks that remain in close association with cells through interactions with cell surface receptors. Laminins are vital for many physiological functions. They are essential for early embryonic development and organogenesis and have crucial functions in several tissues including muscle, nerve, skin, kidney, lung, and the vasculature. A great wealth of data on laminins is available, and an in-depth description is not attempted here. In this review, I will instead provide a snapshot of laminin structure, tissue distribution, and interactions with other matrix molecules and receptors and briefly describe laminin mutations in mice and humans. Several illuminating and timely reviews are cited that can be consulted for references to original articles and more detailed information concerning laminins.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                6 September 2016
                2016
                : 11
                : 9
                : e0161383
                Affiliations
                [1 ]Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska Institutet, Stockholm, Sweden
                [2 ]BioLamina AB, Stockholm, Sweden
                Georgetown University, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceived and designed the experiments: MW EE.

                • Performed the experiments: MW HJ HZ CJ ML.

                • Analyzed the data: MW HZ HJ EE.

                • Contributed reagents/materials/analysis tools: LH HZ.

                • Wrote the paper: MW.

                Article
                PONE-D-15-53794
                10.1371/journal.pone.0161383
                5012698
                27598296
                48c37879-c266-44d5-a161-f96f23a61bc5
                © 2016 Watanabe et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 December 2015
                : 4 August 2016
                Page count
                Figures: 7, Tables: 2, Pages: 15
                Funding
                The funder BioLamina AB provided support in the form of salaries for author LH, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. This does not alter our adherence to PLOS ONE policies on sharing data and materials. The specific role of the author is articulated in the ‘author contributions’ section.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Hepatocytes
                Biology and Life Sciences
                Anatomy
                Liver
                Hepatocytes
                Medicine and Health Sciences
                Anatomy
                Liver
                Hepatocytes
                Biology and Life Sciences
                Biochemistry
                Proteins
                Collagens
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Bile
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Bile
                Biology and Life Sciences
                Physiology
                Body Fluids
                Bile
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Bile
                Biology and Life Sciences
                Biochemistry
                Proteins
                Albumins
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Digestive System Procedures
                Liver Transplantation
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Transplantation
                Organ Transplantation
                Liver Transplantation
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Messenger RNA
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Extracellular Matrix
                Biology and Life Sciences
                Biochemistry
                Proteins
                Recombinant Proteins
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article