11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SNRMPACDC: computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction

      , , ,
      Briefings in Bioinformatics
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.

            The median-effect equation derived from the mass-action law principle at equilibrium-steady state via mathematical induction and deduction for different reaction sequences and mechanisms and different types of inhibition has been shown to be the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch equation, and Scatchard equation. It is shown that dose and effect are interchangeable via defined parameters. This general equation for the single drug effect has been extended to the multiple drug effect equation for n drugs. These equations provide the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI 1 indicate synergism, additive effect, and antagonism, respectively. Based on these algorithms, computer software has been developed to allow automated simulation of synergism and antagonism at all dose or effect levels. It displays the dose-effect curve, median-effect plot, combination index plot, isobologram, dose-reduction index plot, and polygonogram for in vitro or in vivo studies. This theoretical development, experimental design, and computerized data analysis have facilitated dose-effect analysis for single drug evaluation or carcinogen and radiation risk assessment, as well as for drug or other entity combinations in a vast field of disciplines of biomedical sciences. In this review, selected examples of applications are given, and step-by-step examples of experimental designs and real data analysis are also illustrated. The merging of the mass-action law principle with mathematical induction-deduction has been proven to be a unique and effective scientific method for general theory development. The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Expanded View of Complex Traits: From Polygenic to Omnigenic

              A central goal of genetics is to understand the links between genetic variation and disease. Intuitively, one might expect disease-causing variants to cluster into key pathways that drive disease etiology. But for complex traits, association signals tend to be spread across most of the genome-including near many genes without an obvious connection to disease. We propose that gene regulatory networks are sufficiently interconnected such that all genes expressed in disease-relevant cells are liable to affect the functions of core disease-related genes and that most heritability can be explained by effects on genes outside core pathways. We refer to this hypothesis as an "omnigenic" model.
                Bookmark

                Author and article information

                Contributors
                Journal
                Briefings in Bioinformatics
                Oxford University Press (OUP)
                1467-5463
                1477-4054
                January 2023
                January 19 2023
                January 2023
                January 19 2023
                November 23 2022
                : 24
                : 1
                Article
                10.1093/bib/bbac503
                36418927
                488e9a77-1196-42eb-92dc-a35a889078fd
                © 2022

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article