1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Significance of Epidemic Plasmids in the Success of Multidrug-Resistant Drug Pandemic Extraintestinal Pathogenic Escherichia coli

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epidemic IncF plasmids have been pivotal in the selective advantage of multidrug-resistant (MDR) extraintestinal pathogenic Escherichia coli (ExPEC). These plasmids have offered several advantages to their hosts that allowed them to coevolve with the bacterial host genomes and played an integral role in the success of ExPEC. IncF plasmids are large, mosaic, and often contain various types of antimicrobial resistance (AMR) and virulence associated factor (VAF) genes. The presence of AMR, VAF genes, several addition/restriction systems combined with truncated transfer regions, led to the fixation of IncF plasmids in certain ExPEC MDR clones, such as ST131 and ST410. IncF plasmids entered the ST131 ancestral lineage in the mid 1900s and different ST131 clade/CTX-M plasmid combinations coevolved over time. The IncF_CTX-M-15/ST131-C2 subclade combination emerged during the early 2000s, spread rapidly across the globe, and is one of the greatest clone/plasmid successes of the millennium. The ST410-B3 subclade containing bla CTX-M-15 incorporated the NDM-5 carbapenemase gene into existing IncF platforms, providing an additional positive selective advantage that included the carbapenems. A “plasmid-replacement” clade scenario occurred in the histories of ST131 and ST410 as different subclades gained different AMR genes on different IncF platforms. The use of antimicrobial agents will generate selection pressures that enhance the risks for the continuous emergence of MDR ExPEC clone/IncF plasmid combinations. The reasons for clade/IncF replacements and associations between certain clades and specific IncF plasmid types are unknown. Such information will aid in designing management and prevention strategies to combat AMR.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

          (2022)
          Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing.

            In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S. Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mobility of plasmids.

              Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.
                Bookmark

                Author and article information

                Contributors
                jpitout@ucalgary.ca
                Journal
                Infect Dis Ther
                Infect Dis Ther
                Infectious Diseases and Therapy
                Springer Healthcare (Cheshire )
                2193-8229
                2193-6382
                22 March 2023
                22 March 2023
                April 2023
                : 12
                : 4
                : 1029-1041
                Affiliations
                [1 ]GRID grid.22072.35, ISNI 0000 0004 1936 7697, Cummings School of Medicine, , University of Calgary, ; #9, 3535 Research Road NW, Calgary, AB T2L 2K8 Canada
                [2 ]Dynacare Laboratories, Alberta, Canada
                [3 ]GRID grid.49697.35, ISNI 0000 0001 2107 2298, University of Pretoria, ; Pretoria, Gauteng South Africa
                [4 ]GRID grid.429392.7, ISNI 0000 0004 6010 5947, Hackensack Meridian Health Center for Discovery and Innovation, , Hackensack Meridian School of Medicine, ; Nutley, NJ USA
                Author information
                http://orcid.org/0000-0002-4547-4707
                Article
                791
                10.1007/s40121-023-00791-4
                10147871
                36947392
                48780138-fbbc-4e50-837f-f8b878d8457c
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 19 January 2023
                : 6 March 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100013281, Joint Programming Initiative on Antimicrobial Resistance;
                Award ID: 10016015
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000066, National Institute of Environmental Health Sciences;
                Award ID: 10028552
                Award Recipient :
                Categories
                Review
                Custom metadata
                © Springer Healthcare Ltd., part of Springer Nature 2023

                epidemic plasmids,extraintestinal pathogenic escherichia coli,multidrug-resistant clones

                Comments

                Comment on this article