Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pulsatile cerebrospinal fluid dynamics in Chiari I malformation syringomyelia: Predictive value in posterior fossa decompression and insights into the syringogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Pathophysiological mechanisms underlying the syringomyelia associated with Chiari I malformation (CM-1) are still not completely understood, and reliable predictors of the outcome of posterior fossa decompression (PFD) are lacking accordingly. The reported prospective case-series study aimed to prove the existence of a pulsatile, biphasic systolic–diastolic cerebrospinal fluid (CSF) dynamics inside the syrinx associated with CM-1 and to assess its predictive value of patients' outcome after PFD. Insights into the syringogenesis are also reported.

          Methods:

          Fourteen patients with symptomatic CM-1 syringomyelia underwent to a preoperative neuroimaging study protocol involving conventional T1/T2 and cardiac-gated cine phase-contrast magnetic resonance imaging sequences. Peak systolic and diastolic velocities were acquired at four regions of interest (ROIs): syrinx, ventral, and dorsal cervical subarachnoid space and foramen magnum region. Data were reported as mean ± standard deviation. After PFD, the patients underwent a scheduled follow-up lasting 3 years. One-way analysis of variance with Bonferroni Post hoc test of multiple comparisons was performed P was <0.001.

          Results:

          All symptoms but atrophy and spasticity improved. PFD caused a significant velocity changing of each ROI. Syrinx and premedullary cistern velocities were found to be decreased within the 1 st month after PFD (<0.001). A caudad and cephalad CSF jet flow was found inside the syrinx during systole and diastole, respectively.

          Conclusion:

          Syrinx and premedullary cistern velocities are related to an early improvement of symptoms in patients with CM-1 syringomyelia who underwent PFD. The existence of a biphasic pulsatile systolic–diastolic CSF pattern inside the syrinx validates the “transmedullary” theory about the syringogenesis.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

          Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September, 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles.18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies.A detailed explanation and elaboration document is published separately and is freely available on the websites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE statement will contribute to improving the quality of reporting of observational studies
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment.

            The mechanisms previously proposed for the progression of syringomyelia associated with Chiari I malformation of the cerebellar tonsils are controversial, leave many clinical observations unexplained, and underlie the prevalence of different operations currently used as initial treatment. To explore the mechanism of syringomyelia progression in this setting, the authors used anatomical and dynamic (phase-contrast and phase-contrast cine) magnetic resonance (MR) imaging, and intraoperative ultrasonography to examine the anatomy and dynamics of movement of the cerebellar tonsils, the wall of the spinal cord surrounding the syrinx, and the movement of cerebrospinal fluid (CSF) and syrinx fluid at rest, during the respiratory and cardiac cycles, and during Valsalva maneuver in seven affected patients. In all patients the cerebellar tonsils occluded the subarachnoid space at the level of the foramen magnum. Syringomyelia extended from the cervical to the lower thoracic segment of the spinal cord. No patient had evidence of a patent communication between the fourth ventricle and the syrinx on anatomical MR images, dynamic MR images, or intraoperative ultrasound studies. Dynamic MR images of three patients revealed abrupt downward movement of the spinal CSF and the syrinx fluid during systole and upward movement during diastole, but limited movement of CSF across the foramen magnum during the cardiac cycle. Intraoperative ultrasound studies demonstrated abrupt downward movement of the cerebellar tonsils during systole that was synchronous with sudden constriction of the spinal cord and syrinx. Decompression of the foramen magnum was achieved via suboccipital craniectomy, laminectomy of C-1 and C-2, and dural grafting, leaving the arachnoid intact. Immediately after surgery, the pulsatile downward thrust of the tonsils and constriction of the spinal cord and syrinx disappeared. Syringomyelia resolved within 1 to 6 months after surgery in all patients. Observations by the authors suggest the following previously unrecognized mechanism for progression of syringomyelia associated with occlusion of the subarachnoid space at the foramen magnum. The brain expands as it fills with blood during systole, imparting a systolic pressure wave to the intracranial CSF that is accommodated in normal subjects by sudden movement of CSF from the basal cisterns to the upper portion of the spinal canal. With obstruction to rapid movement of CSF at the foramen magnum, the cerebellar tonsils, which plug the subarachnoid space posteriorly, move downward with each systolic pulse, acting as a piston on the partially isolated spinal CSF and producing a systolic pressure wave in the spinal CSF that acts on the surface of the spinal cord.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elucidating the pathophysiology of syringomyelia.

              Syringomyelia causes progressive myelopathy. Most patients with syringomyelia have a Chiari I malformation of the cerebellar tonsils. Determination of the pathophysiological mechanisms underlying the progression of syringomyelia associated with the Chiari I malformation should improve strategies to halt progression of myelopathy. The authors prospectively studied 20 adult patients with both Chiari I malformation and symptomatic syringomyelia. Testing before surgery included the following: clinical examination; evaluation of anatomy by using T1-weighted magnetic resonance (MR) imaging; evaluation of the syrinx and cerebrospinal fluid (CSF) velocity and flow by using phase-contrast cine MR imaging; and evaluation of lumbar and cervical subarachnoid pressure at rest, during the Valsalva maneuver, during jugular compression, and following removal of CSF (CSF compliance measurement). During surgery, cardiac-gated ultrasonography and pressure measurements were obtained from the intracranial, cervical subarachnoid, and lumbar intrathecal spaces and syrinx. Six months after surgery, clinical examinations, MR imaging studies, and CSF pressure recordings were repeated. Clinical examinations and MR imaging studies were repeated annually. For comparison, 18 healthy volunteers underwent T1-weighted MR imaging, cine MR imaging, and cervical and lumbar subarachnoid pressure testing. Compared with healthy volunteers, before surgery, the patients had decreased anteroposterior diameters of the ventral and dorsal CSF spaces at the foramen magnum. In patients, CSF velocity at the foramen magnum was increased, but CSF flow was reduced. Transmission of intracranial pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was partially obstructed. Spinal CSF compliance was reduced, whereas cervical subarachnoid pressure and pulse pressure were increased. Syrinx fluid flowed inferiorly during systole and superiorly during diastole on cine MR imaging. At surgery, the cerebellar tonsils abruptly descended during systole and ascended during diastole, and the upper pole of the syrinx contracted in a manner synchronous with tonsillar descent and with the peak systolic cervical subarachnoid pressure wave. Following surgery, the diameter of the CSF passages at the foramen magnum increased compared with preoperative values, and the maximum flow rate of CSF across the foramen magnum during systole increased. Transmission of pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was normal and cervical subarachnoid mean pressure and pulse pressure decreased to normal. The maximum syrinx diameter decreased on MR imaging in all patients. Cine MR imaging documented reduced velocity and flow of the syrinx fluid. Clinical symptoms and signs improved or remained stable in all patients, and the tonsils resumed a normal shape. The progression of syringomyelia associated with Chiari I malformation is produced by the action of the cerebellar tonsils, which partially occlude the subarachnoid space at the foramen magnum and act as a piston on the partially enclosed spinal subarachnoid space. This creates enlarged cervical subarachnoid pressure waves that compress the spinal cord from without, not from within, and propagate syrinx fluid caudally with each heartbeat, which leads to syrinx progression. The disappearance of the abnormal shape and position of the tonsils after simple decompressive extraarachnoidal surgery suggests that the Chiari I malformation of the cerebellar tonsils is acquired, not congenital. Surgery limited to suboccipital craniectomy, C-I laminectomy, and duraplasty eliminates this mechanism and eliminates syringomyelia and its progression without the risk of more invasive procedures.
                Bookmark

                Author and article information

                Journal
                J Craniovertebr Junction Spine
                J Craniovertebr Junction Spine
                JCVJS
                Journal of Craniovertebral Junction & Spine
                Wolters Kluwer - Medknow (India )
                0974-8237
                0976-9285
                Jan-Mar 2021
                04 March 2021
                : 12
                : 1
                : 15-25
                Affiliations
                [1 ]Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Neurosurgery Unit, University of Pavia, Pavia, Italy
                [2 ]Department of Surgical Sciences, Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
                [3 ]Department of Pediatric Neurosurgery, Leon Pediatric Neuroscience Center of Excellence, Arnold Palmer Hospital for Children, Orlando, Florida, USA
                [4 ]Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
                [5 ]Department of Emergency, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
                [6 ]Department of Neurosurgery, Maria Cecilia Hospital, Cotignola, Italy
                [7 ]Department of Neurological Surgery, University of Illinois at Chicago, Chicago, IL, USA
                Author notes
                Address for correspondence: Dr. Sabino Luzzi, Polo Didattico “Cesare Brusotti”, Viale Brambilla, 74-27100, Pavia, Italy. E-mail: sabino.luzzi@ 123456unipv.it
                Article
                JCVJS-12-15
                10.4103/jcvjs.JCVJS_42_20
                8035583
                33850377
                485c09b0-0f81-4973-9f5b-c2e77feb5499
                Copyright: © 2021 Journal of Craniovertebral Junction and Spine

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 08 April 2020
                : 26 December 2020
                Categories
                Original Article

                Neurology
                cerebrospinal fluid circulation,chiari i malformation,cine magnetic resonance imaging,posterior fossa decompression,syringomyelia

                Comments

                Comment on this article