58
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Clinical Interventions in Aging (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on prevention and treatment of diseases in people over 65 years of age. Sign up for email alerts here.

      36,334 Monthly downloads/views I 3.829 Impact Factor I 7.4 CiteScore I 1.83 Source Normalized Impact per Paper (SNIP) I 1.044 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective estrogen receptor modulators: tissue specificity and clinical utility

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Selective estrogen receptor modulators (SERMs) are a diverse group of nonsteroidal compounds that function as agonists or antagonists for estrogen receptors (ERs) in a target gene-specific and tissue-specific fashion. SERM specificity involves tissue-specific expression of ER subtypes, differential expression of co-regulatory proteins in various tissues, and varying ER conformational changes induced by ligand binding. To date, the major clinical applications of SERMs are their use in the prevention and treatment of breast cancer, the prevention of osteoporosis, and the maintenance of beneficial serum lipid profiles in postmenopausal women. However, SERMs have also been found to promote adverse effects, including thromboembolic events and, in some cases, carcinogenesis, that have proven to be obstacles in their clinical utility. In this review, we discuss the mechanisms of SERM tissue specificity and highlight the therapeutic application of well-known and emergent SERMs.

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.

          The rat estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand binding domain and in the N-terminal transactivation domain. In this study we investigated the messenger RNA expression of both ER subtypes in rat tissues by RT-PCR and compared the ligand binding specificity of the ER subtypes. Saturation ligand binding analysis of in vitro synthesized human ER alpha and rat ER beta protein revealed a single binding component for 16 alpha-iodo-17 beta-estradiol with high affinity [dissociation constant (Kd) = 0.1 nM for ER alpha protein and 0.4 nM for ER beta protein]. Most estrogenic substances or estrogenic antagonists compete with 16 alpha-[125I]iodo-17 beta-estradiol for binding to both ER subtypes in a very similar preference and degree; that is, diethylstilbestrol > hexestrol > dienestrol > 4-OH-tamoxifen > 17 beta-estradiol > coumestrol, ICI-164384 > estrone, 17 alpha-estradiol > nafoxidine, moxestrol > clomifene > estriol, 4-OH-estradiol > tamoxifen, 2-OH-estradiol, 5-androstene-3 beta, 17 beta-diol, genistein for the ER alpha protein and dienestrol > 4-OH-tamoxifen > diethylstilbestrol > hexestrol > coumestrol, ICI-164384 > 17 beta-estradiol > estrone, genistein > estriol > nafoxidine, 5-androstene-3 beta, 17 beta-diol > 17 alpha-estradiol, clomifene, 2-OH-estradiol > 4-OH-estradiol, tamoxifen, moxestrol for the ER beta protein. The rat tissue distribution and/or the relative level of ER alpha and ER beta expression seems to be quite different, i.e. moderate to high expression in uterus, testis, pituitary, ovary, kidney, epididymis, and adrenal for ER alpha and prostate, ovary, lung, bladder, brain, uterus, and testis for ER beta. The described differences between the ER subtypes in relative ligand binding affinity and tissue distribution could contribute to the selective action of ER agonists and antagonists in different tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial.

            Tamoxifen is approved for the reduction of breast cancer risk, and raloxifene has demonstrated a reduced risk of breast cancer in trials of older women with osteoporosis. To compare the relative effects and safety of raloxifene and tamoxifen on the risk of developing invasive breast cancer and other disease outcomes. The National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene trial, a prospective, double-blind, randomized clinical trial conducted beginning July 1, 1999, in nearly 200 clinical centers throughout North America, with final analysis initiated after at least 327 incident invasive breast cancers were diagnosed. Patients were 19,747 postmenopausal women of mean age 58.5 years with increased 5-year breast cancer risk (mean risk, 4.03% [SD, 2.17%]). Data reported are based on a cutoff date of December 31, 2005. Oral tamoxifen (20 mg/d) or raloxifene (60 mg/d) over 5 years. Incidence of invasive breast cancer, uterine cancer, noninvasive breast cancer, bone fractures, thromboembolic events. There were 163 cases of invasive breast cancer in women assigned to tamoxifen and 168 in those assigned to raloxifene (incidence, 4.30 per 1000 vs 4.41 per 1000; risk ratio [RR], 1.02; 95% confidence interval [CI], 0.82-1.28). There were fewer cases of noninvasive breast cancer in the tamoxifen group (57 cases) than in the raloxifene group (80 cases) (incidence, 1.51 vs 2.11 per 1000; RR, 1.40; 95% CI, 0.98-2.00). There were 36 cases of uterine cancer with tamoxifen and 23 with raloxifene (RR, 0.62; 95% CI, 0.35-1.08). No differences were found for other invasive cancer sites, for ischemic heart disease events, or for stroke. Thromboembolic events occurred less often in the raloxifene group (RR, 0.70; 95% CI, 0.54-0.91). The number of osteoporotic fractures in the groups was similar. There were fewer cataracts (RR, 0.79; 95% CI, 0.68-0.92) and cataract surgeries (RR, 0.82; 95% CI, 0.68-0.99) in the women taking raloxifene. There was no difference in the total number of deaths (101 vs 96 for tamoxifen vs raloxifene) or in causes of death. Raloxifene is as effective as tamoxifen in reducing the risk of invasive breast cancer and has a lower risk of thromboembolic events and cataracts but a nonstatistically significant higher risk of noninvasive breast cancer. The risk of other cancers, fractures, ischemic heart disease, and stroke is similar for both drugs. clinicaltrials.gov Identifier: NCT00003906.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators.

              Raloxifene hydrochloride, a selective estrogen receptor modulator, prevents bone loss in postmenopausal women, but whether it reduces fracture risk in these women is not known. To determine the effect of raloxifene therapy on risk of vertebral and nonvertebral fractures. The Multiple Outcomes of Raloxifene Evaluation (MORE) study, a multicenter, randomized, blinded, placebo-controlled trial. A total of 7705 women aged 31 to 80 years in 25 countries who had been postmenopausal for at least 2 years and who met World Health Organization criteria for having osteoporosis. The study began in 1994 and had up to 36 months of follow-up for primary efficacy measurements and nonserious adverse events and up to 40 months of follow-up for serious adverse events. Participants were randomized to 60 mg/d or 120 mg/d of raloxifene or to identically appearing placebo pills; in addition, all women received supplemental calcium and cholecalciferol. Incident vertebral fracture was determined radiographically at baseline and at scheduled 24- and 36-month visits. Nonvertebral fracture was ascertained by interview at 6-month-interim visits. Bone mineral density was determined annually by dual-energy x-ray absorptiometry. At 36 months of the evaluable radiographs in 6828 women, 503 (7.4%) had at least 1 new vertebral fracture, including 10.1% of women receiving placebo, 6.6% of those receiving 60 mg/d of raloxifene, and 5.4% of those receiving 120 mg/d of raloxifene. Risk of vertebral fracture was reduced in both study groups receiving raloxifene (for 60-mg/d group: relative risk [RR], 0.7; 95% confidence interval [CI], 0.5-0.8; for 120-mg/d group: RR, 0.5; 95% CI, 0.4-0.7). Frequency of vertebral fracture was reduced both in women who did and did not have prevalent fracture. Risk of nonvertebral fracture for raloxifene vs placebo did not differ significantly (RR, 0.9; 95% CI, 0.8-1.1 for both raloxifene groups combined). Compared with placebo, raloxifene increased bone mineral density in the femoral neck by 2.1 % (60 mg) and 2.4% (120 mg) and in the spine by 2.6% (60 mg) and 2.7% (120 mg) P<0.001 for all comparisons). Women receiving raloxifene had increased risk of venous thromboembolus vs placebo (RR, 3.1; 95% CI, 1.5-6.2). Raloxifene did not cause vaginal bleeding or breast pain and was associated with a lower incidence of breast cancer. In postmenopausal women with osteoporosis, raloxifene increases bone mineral density in the spine and femoral neck and reduces risk of vertebral fracture.
                Bookmark

                Author and article information

                Journal
                Clin Interv Aging
                Clin Interv Aging
                Clinical Interventions in Aging
                Clinical Interventions in Aging
                Dove Medical Press
                1176-9092
                1178-1998
                2014
                28 August 2014
                : 9
                : 1437-1452
                Affiliations
                Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
                Author notes

                *These authors contributed equally to this work

                Correspondence: John A Arnott, Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 USA, Tel +1 570 504 9675, Fax +1 570 504 9660, Email jarnott@ 123456tcmedc.org
                Article
                cia-9-1437
                10.2147/CIA.S66690
                4154886
                25210448
                48526512-beb3-4998-a24e-07a20956fd66
                © 2014 Martinkovich et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Health & Social care
                selective estrogen receptor modulators,serms,estrogen receptors
                Health & Social care
                selective estrogen receptor modulators, serms, estrogen receptors

                Comments

                Comment on this article