Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potentiation of Morphine-Induced Antinociception by Propranolol: The Involvement of Dopamine and GABA Systems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tolerance to the analgesic effect of morphine is a major clinical problem which can be managed by co-administration of another drug. This study investigated the ability of propranolol to potentiate the antinociceptive action of morphine and the possible mechanisms underlying this effect. Antinociception was assessed in three nociceptive tests (thermal, hot plate), (visceral, acetic acid), and (inflammatory, formalin test) in mice and quantified by measuring the percent maximum possible effect, the percent inhibition of acetic acid-evoked writhing response, and the area under the curve values of number of flinches for treated mice, respectively. The study revealed that propranolol (0.25–20 mg/Kg, IP) administration did not produce analgesia in mice. However, 10 mg/Kg propranolol, enhanced the antinociceptive effect of sub-analgesic doses of morphine (0.2, 1, and 2 mg/Kg, IP) in the three nociceptive tests. It also shifted the dose response curve of morphine to the left. The combined effect of propranolol and morphine was attenuated by haloperidol (D 2 receptor antagonist, 1.5 mg/Kg, IP), and bicuculline (GABA A receptor antagonist, 2 mg/Kg, IP). Repeated daily administration of propranolol (10 mg/Kg, IP) did not alter the nociceptive responses in the three pain tests, but it significantly potentiated morphine-induced antinociception in the hot plate, acetic acid-evoked writhing, and in the second phase of formalin tests. Together, the data suggest that a cross-talk exists between the opioidergic and adrenergic systems and implicate dopamine and GABA systems in this synergistic effect of morphine-propranolol combination. Propranolol may serve as an adjuvant therapy to potentiate the effect of opioid analgesics.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          The formalin test in mice: dissociation between inflammatory and non-inflammatory pain.

          The formalin test in mice is a valid and reliable model of nociception and is sensitive for various classes of analgesic drugs. The noxious stimulus is an injection of dilute formalin (1% in saline) under the skin of the dorsal surface of the right hindpaw. The response is the amount of time the animals spend licking the injected paw. Two distinct periods of high licking activity can be identified, an early phase lasting the first 5 min and a late phase lasting from 20 to 30 min after the injection of formalin. In order to elucidate the involvement of inflammatory processes in the two phases, we tested different classes of drugs in the two phases independently. Morphine, codeine, nefopam, and orphenadrine, as examples of centrally acting analgesics, were antinociceptive in both phases. In contrast, the non-steroid anti-inflammatory drugs indomethacin and naproxen and the steroids dexamethasone and hydrocortisone inhibited only the late phase, while acetylsalicylic acid (ASA) and paracetamol were antinociceptive in both phases. The results demonstrate that the two phases in the formalin test may have different nociceptive mechanisms. It is suggested that the early phase is due to a direct effect on nociceptors and that prostaglandins do not play an important role during this phase. The late phase seems to be an inflammatory response with inflammatory pain that can be inhibited by anti-inflammatory drugs. ASA and paracetamol seem to have actions independent of their inhibition of prostaglandin synthesis and they also have effects on non-inflammatory pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of central dopamine in pain and analgesia.

            Recent insights have demonstrated a central role for dopaminergic neurotransmission in modulating pain perception and natural analgesia within supraspinal regions, including the basal ganglia, insula, anterior cingulate cortex, thalamus and periaqueductal gray. In addition, while the participation of serotonin and norepinephrine in spinal descending inhibition of pain is well known, a critical role for dopamine in descending inhibition has also been demonstrated. Decreased levels of dopamine likely contribute to the painful symptoms that frequently occur in Parkinson's disease. Moreover, abnormalities in dopaminergic neurotransmission have been objectively demonstrated in painful clinical conditions, including burning mouth syndrome, fibromyalgia and restless legs syndrome. Evidence from animal models and indirect evidence from pharmaceutical trials also suggest a role for dopamine in chronic regional pain syndrome and painful diabetic neuropathy. Several novel classes of medication with analgesic properties have bearing on dopaminergic activity as evident in the capacity of dopamine antagonists to attenuate their analgesic capacity. An expanded appreciation for the role of dopamine in natural analgesia provides the impetus for further study involving preclinical models and advanced neuroimaging techniques in humans, which may lead to the development of novel therapeutic strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis.

              COX inhibitors and beta-blockers were recently suggested to reduce cancer progression through inhibition of tumor proliferation and growth factor secretion, induction of tumor apoptosis, and prevention of cellular immune suppression during the critical perioperative period. Here we evaluated the perioperative impact of clinically applicable drugs from these categories in the context of surgery, studying natural killer (NK) cell activity and resistance to experimental metastases. F344 rats were treated with COX-1 inhibitors (SC560), COX-2 inhibitors (indomethacin, etodolac, or celecoxib), a beta-blocker (propranolol), or a combination of a COX-2 inhibitor and a beta-blocker (etodolac and propranolol). Rats underwent laparotomy, and were inoculated intravenously with syngeneic MADB106 tumor cells for the assessment of lung tumor retention (LTR). Additionally, the impact of these drug regimens on postoperative levels of NK cytotoxicity was studied in peripheral blood and marginating-pulmonary leukocytes. Surgery increased MADB106 LTR. COX-2 inhibition, but not COX-1 inhibition, reduced postoperative LTR. Etodolac and propranolol both attenuated the deleterious impact of surgery, and their combined use abolished it. Surgery decreased NK cytotoxicity per NK cell in both immune compartments, and only the combination of etodolac and propranolol significantly attenuated these effects. Lastly, the initiation of drug treatment three days prior to surgery yielded the same beneficial effects as a single pre-operative administration, but, as discussed, prolonged treatment may be more advantageous clinically. Excess prostaglandin and catecholamine release contributes to postoperative immune-suppression. Treatment combining perioperative COX-2 inhibition and beta-blockade is practical in operated cancer patients, and our study suggests potential immunological and clinical benefits.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                10 November 2017
                2017
                : 8
                : 794
                Affiliations
                [1] 1Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University , Jeddah, Saudi Arabia
                [2] 2Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University , Alexandria, Egypt
                Author notes

                Edited by: Robert M. Caudle, University of Florida, United States

                Reviewed by: Kabirullah Lutfy, Western University of Health Sciences, United States; Sunil Sirohi, Xavier University of Louisiana, United States

                *Correspondence: Elham A. Afify, afify001@ 123456yahoo.com

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2017.00794
                5701645
                4846928b-f90c-45b8-91c1-424379b052d1
                Copyright © 2017 Afify and Andijani.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 August 2017
                : 20 October 2017
                Page count
                Figures: 5, Tables: 1, Equations: 2, References: 64, Pages: 12, Words: 0
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                opioids,propranolol,antinociception,hot plate,formalin,acetic acid,d2 receptors,gabaa receptors

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content463

                Cited by3

                Most referenced authors487