13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soluble interleukin-27 receptor alpha is a valuable prognostic biomarker for acute graft-versus-host disease after allogeneic haematopoietic stem cell transplantation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute graft-versus-host disease (aGVHD) is a major life-threatening complication after allogeneic haematopoietic stem cell transplantation. Interleukin-27 receptor alpha (IL-27Rα) is a co-receptor of IL-27, an inflammatory cytokine that possesses extensive immunological functions. It has been reported that IL-27Rα can exist in its soluble form (sIL-27Rα) in human serum and can function as a natural IL-27 antagonist. In this study, we examined serum sIL-27Rα levels and evaluated their prognostic value in aGVHD. A total of 152 subjects were prospectively recruited and separated into the training group (n = 72) and the validation group (n = 80). Serum sIL-27Rα at neutrophil engraftment was measured by ELISA. In the training set, a cut-off value of sIL-27Rα = 59.40 ng/ml was identified to predict grade II–IV aGVHD (AUC = 0.735, 95% CI 0.618–0.853, P = 0.001). Cumulative incidences of grade II–IV aGVHD ( P = 0.004), relapse rate ( P = 0.008), and non-relapse mortality ( P = 0.008) in patients with low serum sIL-27Rα (≥59.40 ng/ml) were significantly higher than those of patients with high serum sIL-27Rα (<59.40 ng/ml). Multivariate analysis confirmed that low sIL-27Rα level (HR = 2.83 95% CI 1.29–6.19, P < 0.01) was an independent risk factor for predicting grade II-IV aGVHD. In addition, serum sIL-27Rα was positively correlated with IL-27 (R = 0.27, P = 0.029), IL-10 (R = 0.37, P = 0.0015) and HGF (R = 0.27, P = 0.0208), but was negatively correlated with TNFR1 (R = −0.365, P = 0.0022) and ST2 (R = −0.334, P = 0.0041), elafin (R = −0.29, P = 0.0117), and REG3α (R = −0.417, P = 0.0003). More importantly, the threshold value of sIL-27Rα was then validated in an independent cohort of 80 patients (AUC = 0.790, 95% CI 0.688–0.892, P < 0.001). Taken together, our findings suggested that serum sIL-27Rα at neutrophil engraftment maybe a valuable prognostic biomarker in predicting the incidence of moderate-to-severe aGVHD.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Estimation of failure probabilities in the presence of competing risks: new representations of old estimators.

          A topic that has received attention in both the statistical and medical literature is the estimation of the probability of failure for endpoints that are subject to competing risks. Despite this, it is not uncommon to see the complement of the Kaplan-Meier estimate used in this setting and interpreted as the probability of failure. If one desires an estimate that can be interpreted in this way, however, the cumulative incidence estimate is the appropriate tool to use in such situations. We believe the more commonly seen representations of the Kaplan-Meier estimate and the cumulative incidence estimate do not lend themselves to easy explanation and understanding of this interpretation. We present, therefore, a representation of each estimate in a manner not ordinarily seen, each representation utilizing the concept of censored observations being 'redistributed to the right.' We feel these allow a more intuitive understanding of each estimate and therefore an appreciation of why the Kaplan-Meier method is inappropriate for estimation purposes in the presence of competing risks, while the cumulative incidence estimate is appropriate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced mortality after allogeneic hematopoietic-cell transplantation.

            Over the past decade, advances have been made in the care of patients undergoing transplantation. We conducted a study to determine whether these advances have improved the outcomes of transplantation. We analyzed overall mortality, mortality not preceded by relapse, recurrent malignant conditions, and the frequency and severity of major complications of transplantation, including graft-versus-host disease (GVHD) and hepatic, renal, pulmonary, and infectious complications, among 1418 patients who received their first allogeneic transplants at our center in Seattle in the period from 1993 through 1997 and among 1148 patients who received their first allogeneic transplants in the period from 2003 through 2007. Components of the Pretransplant Assessment of Mortality (PAM) score were used in regression models to adjust for the severity of illness at the time of transplantation. In the 2003-2007 period, as compared with the 1993-1997 period, we observed significant decreases in mortality not preceded by relapse, both at day 200 (by 60%) and overall (by 52%), the rate of relapse or progression of a malignant condition (by 21%), and overall mortality (by 41%), after adjustment for components of the PAM score. The results were similar when the analyses were limited to patients who received myeloablative conditioning therapy. We also found significant decreases in the risk of severe GVHD; disease caused by viral, bacterial, and fungal infections; and damage to the liver, kidneys, and lungs. We found a substantial reduction in the hazard of death related to allogeneic hematopoietic-cell transplantation, as well as increased long-term survival, over the past decade. Improved outcomes appear to be related to reductions in organ damage, infection, and severe acute GVHD. (Funded by the National Institutes of Health.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells.

              An efficient Th1-driven adaptive immune response requires activation of the T cell receptor and secretion of the T cell stimulatory cytokine IL-12 by activated antigen-presenting cells. IL-12 triggers Th1 polarization of naive CD4(+) T cells and secretion of IFN-gamma. We describe a new heterodimeric cytokine termed IL-27 that consists of EBI3, an IL-12p40-related protein, and p28, a newly discovered IL-12p35-related polypeptide. IL-27 is an early product of activated antigen-presenting cells and drives rapid clonal expansion of naive but not memory CD4(+) T cells. It also strongly synergizes with IL-12 to trigger IFN-gamma production of naive CD4(+) T cells. IL-27 mediates its biologic effects through the orphan cytokine receptor WSX-1/TCCR.
                Bookmark

                Author and article information

                Contributors
                mashoubao@suda.edu.cn
                wudepei@medmail.com.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 July 2018
                9 July 2018
                2018
                : 8
                : 10328
                Affiliations
                [1 ]GRID grid.429222.d, Jiangsu Institute of Hematology, , The First Affiliated Hospital of Soochow University, ; Suzhou, 215006 China
                [2 ]ISNI 0000 0001 0198 0694, GRID grid.263761.7, Institute of Blood and Marrow Transplantation, , Soochow University, ; Suzhou, 215123 China
                [3 ]ISNI 0000 0001 0198 0694, GRID grid.263761.7, Collaborative Innovation Center of Hematology, , Soochow University, ; Suzhou, 215006 China
                [4 ]ISNI 0000 0000 9255 8984, GRID grid.89957.3a, Department of Rheumatology, , Huai’an First People’s Hospital, Nanjing Medical University, ; Huai’an, 223300 China
                Article
                28614
                10.1038/s41598-018-28614-4
                6037712
                29985424
                4840b35f-f6ea-4d4d-8266-76e78040d02e
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 October 2017
                : 26 June 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81730003
                Award ID: 81470346
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100004608, Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation);
                Award ID: BK201500352
                Award Recipient :
                Funded by: China Postdoctoral Science Foundation (7131702415)
                Funded by: The Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The Innovation Capability Development Project of Jiangsu Province (No. BM2015004). The National Key Research And Development Program (2016YFC0902800).
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article