48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biometry of Anterior Segment of Human Eye on Both Horizontal and Vertical Meridians during Accommodation Imaged with Extended Scan Depth Optical Coherence Tomography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To determine the biometry of anterior segment dimensions of the human eye on both horizontal and vertical meridians with extended scan depth optical coherence tomography (OCT) during accommodation.

          Methods

          Twenty pre-presbyopic volunteers, aged between 24 and 30, were recruited. The ocular anterior segment of each subject was imaged using an extended scan depth OCT under non- and 3.0 diopters (D) of accommodative demands on both horizontal and vertical meridians. All the images were analyzed to yield the following parameters: pupil diameter (PD), anterior chamber depth (ACD), anterior and posterior surface curvatures of the crystalline lens (ASC and PSC) and the lens thickness (LT). Two consecutive measurements were performed to assess the repeatability and reproducibility of this OCT. They were evaluated by calculating the within-subject standard deviation (SD), a paired t-test, intra-class correlation coefficients (ICC) and the coefficient of repeatability/reproducibility (CoR).

          Results

          There were no significant differences between two consecutive measurements on either horizontal or vertical meridians under both two different accommodative statuses (P>0.05). The ICC for all parameters ranged from 0.775 to 0.998, except for the PSC (0.550) on the horizontal meridian under the non-accommodative status. In addition, the CoR for most of the parameters were excellent (0.004% to 4.89%). In all the parameters, only PD and PSC were found different between the horizontal and vertical meridians under both accommodative statuses (P<0.05). PD, ACD, ASC and PSC under accommodative status were significantly smaller than those under the non-accommodative status, except that the PSC at the vertical meridian did not change. In addition, LT was significantly increased when accommodation.

          Conclusion

          The extended scan depth OCT successfully measured the dimensions of the anterior eye during accommodation with good repeatability and reproducibility on both horizontal and vertical meridians. The asymmetry of lens posterior surface and oval-shaped pupil were found during accommodation.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.

          To demonstrate a new diagnostic technique, optical coherence tomography, for high-resolution cross-sectional imaging of structures in the anterior segment of the human eye in vivo. Optical coherence tomography is a new, noninvasive, noncontact optical imaging modality that has spatial resolution superior to that of conventional clinical ultrasonography ( 90 dB). Survey of intraocular structure and dimension measurements. Laboratory. Convenience sample. Correlation with range of accepted normal intraocular structure profiles and dimensions. Direct in vivo measurements with micrometer-scale resolution were performed of corneal thickness and surface profile (including visualization of the corneal epithelium), anterior chamber depth and angle, and iris thickness and surface profile. Dense nuclear cataracts were successfully imaged through their full thickness in a cold cataract model in calf eyes in vitro. Optical coherence tomography has potential as a diagnostic tool for applications in noncontact biometry, anterior chamber angle assessment, identification and monitoring of intraocular masses and tumors, and elucidation of abnormalities of the cornea, iris, and crystalline lens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study.

            To use high-resolution magnetic resonance (MR) images of the eye to directly measure the relationship between ciliary muscle contraction and lens response with advancing age. A General Electric, 1.5-Tesla MR imager and a custom-designed eye imaging coil were used to collect high-resolution MR images from 25 subjects, 22 through 83 years of age. A nonmagnetic binocular stimulus apparatus was used to induce both relaxed accommodation (0.1 diopter [D]) and strong accommodative effort (8.0 D). Measurements of the ciliary muscle ring diameter (based on the inner apex), lens equatorial diameter, and lens thickness were derived from the MR images. Muscle contraction is present in all subjects and reduces only slightly with advancing age. A decrease in the diameter of the unaccommodated ciliary muscle ring was highly correlated with advancing age. Lens equatorial diameter does not correlate with age for either accommodative state. Although unaccommodated lens thickness (i.e., lens minor axis length) increases with age, the thickness of the lens under accommodative effort is only modestly age-dependent. Ciliary muscle contractile activity remains active in all subjects. A decrease in the unaccommodated ciliary muscle diameter, along with the previously noted increase in lens thickness (the "lens paradox"), demonstrates the greatest correlation with advancing age. These results support the theory that presbyopia is actually the loss in ability to disaccommodate due to increases in lens thickness, the inward movement of the ciliary ring, or both.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The eye in focus: accommodation and presbyopia.

              Current understanding of the anatomy, function and performance of the accommodative system of the young, adult human eye is outlined. Most major current models of the accommodative mechanism are based on Helmholtz's original ideas but, despite of a growing volume of related research, uncertainty continues over the relative contributions made to the overall mechanism by different ocular structures. The changes with age are then discussed. Although the amplitude of accommodation decreases steadily from later childhood, the speed and accuracy of the system within the available amplitude are little impaired until the age of about 40, when the amplitude falls below that needed for normal near work. A review of the available evidence on age-related change in the lens, capsule, ciliary body and other relevant ocular structures confirms that geometric and viscoelastic lenticular changes play major roles in the progressive loss of accommodation. Other factors may also contribute in an, as yet, unquantified way and a full understanding of the origins of presbyopic change remains elusive.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                12 August 2014
                : 9
                : 8
                : e104775
                Affiliations
                [1]School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
                Medical University Graz, Austria
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Performed the experiments: LL YY QC BL. Analyzed the data: LL YY MS. Contributed reagents/materials/analysis tools: MS QM DZ JQ FL. Wrote the manuscript: LL YY.

                Article
                PONE-D-14-07630
                10.1371/journal.pone.0104775
                4130593
                25117696
                48397d56-fca2-4857-82be-ed037903788c
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 February 2014
                : 14 July 2014
                Page count
                Pages: 6
                Funding
                This work was supported by National Natural Science Foundation of China (Grant No. 81170869 to Lu; Grant No. 81200672 to Chen), Wenzhou Science and Technology program (Grant No. Y20120151 to Chen), and National Basic Research Program (973 Program) of China (2011CB504601). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Medicine and Health Sciences

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content269

                Cited by6

                Most referenced authors167