1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Circ-ITCH overexpression promoted cell proliferation and migration in Hirschsprung disease through miR-146b-5p/RET axis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Circular RNAs are a large class of animal RNAs with regulatory potency.

          Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An emerging function of circRNA-miRNAs-mRNA axis in human diseases

            Circular RNAs (circRNAs), a novel class of long noncoding RNAs, are characterized by a covalently closed continuous loop without 5′ or 3′ polarities structure and have been widely found in thousands of lives including plants, animals and human beings. Utilizing the high-throughput RNA sequencing (RNA-seq) technology, recent findings have indicated thata great deal of circRNAs, which are endogenous, stable, widely expressed in mammalian cells, often exhibit cell type-specific, tissue-specific or developmental-stage-specific expression. Evidences are arising that some circRNAs might regulate microRNA (miRNA) function as microRNA sponges and play a significant role in transcriptional control. circRNAs associate with related miRNAs and the circRNA-miRNA axes are involved in a serious of disease pathways such as apoptosis, vascularization, invasion and metastasis. In this review, we generalize and analyse the aspects including synthesis, characteristics, classification, and several regulatory functions of circRNAs and highlight the association between circRNAs dysregulation by circRNA-miRNA-mRNA axis and sorts of diseases including cancer- related and non-cancer diseases.”
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung's disease

              Research over the past decade suggested critical roles for circular RNAs in the natural growth and disease progression. However, it remains poorly defined whether the circular RNAs participate in Hirschsprung disease (HSCR). Here, we reported that the cir-ZNF609 was down-regulated in HSCR compared with normal bowel tissues. Furthermore, suppression of cir-ZNF609 inhibited the proliferation and migration of cells. We screened out several putative cir-ZNF609 ceRNAs of which the AKT3 transcript was selected. Finally, RNA immunoprecipitation and luciferase reporter assays demonstrated that cir-ZNF609 may act as a sponge for miR-150-5p to modulate the expression of AKT3. In conclusion, these findings illustrated that cir-ZNF609 took part in the onset of HSCR through the crosstalk with AKT3 by competing for shared miR-150-5p.
                Bookmark

                Author and article information

                Journal
                Pediatric Research
                Pediatr Res
                Springer Science and Business Media LLC
                0031-3998
                1530-0447
                January 28 2022
                Article
                10.1038/s41390-021-01860-5
                35091706
                482d5fdc-01a0-4aed-aa3a-28e6d96a50bb
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article