0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Offline Digital Euro: a Minimum Viable CBDC using Groth-Sahai proofs

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current digital payment solutions are fragile and offer less privacy than traditional cash. Their critical dependency on an online service used to perform and validate transactions makes them void if this service is unreachable. Moreover, no transaction can be executed during server malfunctions or power outages. Due to climate change, the likelihood of extreme weather increases. As extreme weather is a major cause of power outages, the frequency of power outages is expected to increase. The lack of privacy is an inherent result of their account-based design or the use of a public ledger. The critical dependency and lack of privacy can be resolved with a Central Bank Digital Currency that can be used offline. This thesis proposes a design and a first implementation for an offline-first digital euro. The protocol offers complete privacy during transactions using zero-knowledge proofs. Furthermore, transactions can be executed offline without third parties and retroactive double-spending detection is facilitated. To protect the users' privacy, but also guard against money laundering, we have added the following privacy-guarding mechanism. The bank and trusted third parties for law enforcement must collaborate to decrypt transactions, revealing the digital pseudonym used in the transaction. Importantly, the transaction can be decrypted without decrypting prior transactions attached to the digital euro. The protocol has a working initial implementation showcasing its usability and demonstrating functionality.

          Related collections

          Author and article information

          Journal
          01 July 2024
          Article
          2407.13776
          481020e1-5846-421f-b630-67757eea7a97

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          68-02
          13 pages, 4 figures
          cs.CR q-fin.TR

          Security & Cryptology,Trading & Market microstructure
          Security & Cryptology, Trading & Market microstructure

          Comments

          Comment on this article