7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of motor memory dynamics in structuring bodily self-consciousness

      , ,
      iScience
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: not found
          • Article: not found

          Rubber hands 'feel' touch that eyes see.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of sensorimotor learning.

            The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central cancellation of self-produced tickle sensation.

              A self-produced tactile stimulus is perceived as less ticklish than the same stimulus generated externally. We used fMRI to examine neural responses when subjects experienced a tactile stimulus that was either self-produced or externally produced. More activity was found in somatosensory cortex when the stimulus was externally produced. In the cerebellum, less activity was associated with a movement that generated a tactile stimulus than with a movement that did not. This difference suggests that the cerebellum is involved in predicting the specific sensory consequences of movements, providing the signal that is used to cancel the sensory response to self-generated stimulation.
                Bookmark

                Author and article information

                Contributors
                Journal
                iScience
                iScience
                Elsevier BV
                25890042
                December 2021
                December 2021
                : 24
                : 12
                : 103511
                Article
                10.1016/j.isci.2021.103511
                47f8ba38-8ce9-4468-bf8d-500f7f809e07
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article