3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      (p)ppGpp Metabolism and Antimicrobial Resistance in Bacterial Pathogens

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single cell microorganisms including pathogens relentlessly face myriads of physicochemical stresses in their living environment. In order to survive and multiply under such unfavorable conditions, microbes have evolved with complex genetic networks, which allow them to sense and respond against these stresses. Stringent response is one such adaptive mechanism where bacteria can survive under nutrient starvation and other related stresses. The effector molecules for the stringent response are guanosine-5'-triphosphate 3'-diphosphate (pppGpp) and guanosine-3', 5'-bis(diphosphate) (ppGpp), together called (p)ppGpp. These effector molecules are now emerging as master regulators for several physiological processes of bacteria including virulence, persistence, and antimicrobial resistance. (p)ppGpp may work independently or along with its cofactor DksA to modulate the activities of its prime target RNA polymerase and other metabolic enzymes, which are involved in different biosynthetic pathways. Enzymes involved in (p)ppGpp metabolisms are ubiquitously present in bacteria and categorized them into three classes, i.e., canonical (p)ppGpp synthetase (RelA), (p)ppGpp hydrolase/synthetase (SpoT/Rel/RSH), and small alarmone synthetases (SAS). While RelA gets activated in response to amino acid starvation, enzymes belonging to SpoT/Rel/RSH and SAS family can synthesize (p)ppGpp in response to glucose starvation and several other stress conditions. In this review, we will discuss about the current status of the following aspects: (i) diversity of (p)ppGpp biosynthetic enzymes among different bacterial species including enteropathogens, (ii) signals that modulate the activity of (p)ppGpp synthetase and hydrolase, (iii) effect of (p)ppGpp in the production of antibiotics, and (iv) role of (p)ppGpp in the emergence of antibiotic resistant pathogens. Emphasis has been given to the cholera pathogen Vibrio cholerae due to its sophisticated and complex (p)ppGpp metabolic pathways, rapid mutational rate, and acquisition of antimicrobial resistance determinants through horizontal gene transfer. Finally, we discuss the prospect of (p)ppGpp metabolic enzymes as potential targets for developing antibiotic adjuvants and tackling persistence of infections.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial persistence as a phenotypic switch.

          A fraction of a genetically homogeneous microbial population may survive exposure to stress such as antibiotic treatment. Unlike resistant mutants, cells regrown from such persistent bacteria remain sensitive to the antibiotic. We investigated the persistence of single cells of Escherichia coli with the use of microfluidic devices. Persistence was linked to preexisting heterogeneity in bacterial populations because phenotypic switching occurred between normally growing cells and persister cells having reduced growth rates. Quantitative measurements led to a simple mathematical description of the persistence switch. Inherent heterogeneity of bacterial populations may be important in adaptation to fluctuating environments and in the persistence of bacterial infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origins and evolution of antibiotic resistance.

            Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              (p)ppGpp: still magical?

              The fundamental details of how nutritional stress leads to elevating (p)ppGpp are questionable. By common usage, the meaning of the stringent response has evolved from the specific response to (p)ppGpp provoked by amino acid starvation to all responses caused by elevating (p)ppGpp by any means. Different responses have similar as well as dissimilar positive and negative effects on gene expression and metabolism. The different ways that different bacteria seem to exploit their capacities to form and respond to (p)ppGpp are already impressive despite an early stage of discovery. Apparently, (p)ppGpp can contribute to regulation of many aspects of microbial cell biology that are sensitive to changing nutrient availability: growth, adaptation, secondary metabolism, survival, persistence, cell division, motility, biofilms, development, competence, and virulence. Many basic questions still exist. This review tries to focus on some issues that linger even for the most widely characterized bacterial strains.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 October 2020
                2020
                : 11
                : 563944
                Affiliations
                [1] 1Infection and Immunology Division, Translational Health Science and Technology Institute (THSTI) , Faridabad, India
                [2] 2Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB) , Kolkata, India
                Author notes

                Edited by: Michael Cashel, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), United States

                Reviewed by: Agnieszka Szalewska-Pałasz, University of Gdansk, Poland; Rajendran Harinarayanan, Centre for DNA Fingerprinting and Diagnostics (CDFD), India

                *Correspondence: Bhabatosh Das, bhabatosh@ 123456thsti.res.in

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.563944
                7581866
                33162948
                47dda86f-22af-4da9-9eaa-d0f377bb30ef
                Copyright © 2020 Das and Bhadra.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 May 2020
                : 09 September 2020
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 94, Pages: 10, Words: 9197
                Funding
                Funded by: Dept. of Biotechnology (DBT), Govt. of India
                Award ID: BT/PR9983/MED/97/194/2013
                Funded by: Translational Health Science and Technology Institute core funds
                Funded by: MLP118 lab project of CSIR-IICB
                Categories
                Microbiology
                Review

                Microbiology & Virology
                bacterial pathogen,antibiotic resistance,spot,rela,stringent response,(p)ppgpp,alarmone

                Comments

                Comment on this article