Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early detection of MDR Mycobacterium tuberculosis mutations in Pakistan

      research-article
      , , ,
      Scientific Reports
      Nature Publishing Group UK
      Biotechnology, Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The result of improper treatment has led to the rise of Multidrug-resistant (MDR) strains. This concern still exists in Pakistan. In order to save energy, time and resources an early detection of resistant cases is imperative. Thus, a treated group of 100 isolates and a control group of 56 untreated isolates were studied. PCR and gene sequencing showed mutations at codon 531 and 513 in the rpoB gene. 12% of cases showed a double mutation in the rpoB gene. katG gene showed mutations at codon 315 and 299. 28.6% of the control group cases were positive for MDR whereas 100% of the treated group were positive for MDR. This study explores the significantly increasing ratio of MDR-TB among Pakistani population. This study provides prevalent MDR mutations among Pakistanis and suggests developing such molecular assays that are time and cost effective. Importance: Pakistan is a developing country and has fourth highest incidence rate of MDR-TB. The treatment of MDR-TB is the use of second line drugs that has severe side effects as well as it requires long time span. One of the strategies to control the spread of MDR-TB is to decipher the aberrations at molecular level in order to formulate potent drugs that can treat the patients within short span of time. Determining the mutation profile of MDR in Pakistani populations will open new horizons for the improvement of drug treatment regimens to make it more effective or for the development of novel potent drugs and vaccines to better treat the drug-resistant TB. Moreover, this study will be help in disease control program.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Primer3—new capabilities and interfaces

          Polymerase chain reaction (PCR) is a basic molecular biology technique with a multiplicity of uses, including deoxyribonucleic acid cloning and sequencing, functional analysis of genes, diagnosis of diseases, genotyping and discovery of genetic variants. Reliable primer design is crucial for successful PCR, and for over a decade, the open-source Primer3 software has been widely used for primer design, often in high-throughput genomics applications. It has also been incorporated into numerous publicly available software packages and web services. During this period, we have greatly expanded Primer3’s functionality. In this article, we describe Primer3’s current capabilities, emphasizing recent improvements. The most notable enhancements incorporate more accurate thermodynamic models in the primer design process, both to improve melting temperature prediction and to reduce the likelihood that primers will form hairpins or dimers. Additional enhancements include more precise control of primer placement—a change motivated partly by opportunities to use whole-genome sequences to improve primer specificity. We also added features to increase ease of use, including the ability to save and re-use parameter settings and the ability to require that individual primers not be used in more than one primer pair. We have made the core code more modular and provided cleaner programming interfaces to further ease integration with other software. These improvements position Primer3 for continued use with genome-scale data in the decade ahead.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis.

            A method for the rapid identification of mycobacteria to the species level was developed on the basis of evaluation by the polymerase chain reaction (PCR) of the gene encoding for the 65-kDa protein. The method involves restriction enzyme analysis of PCR products obtained with primers common to all mycobacteria. Using two restriction enzymes, BstEII and HaeIII, medically relevant and other frequent laboratory isolates were differentiated to the species or subspecies level by PCR-restriction enzyme pattern analysis. PCR-restriction enzyme pattern analysis was performed on isolates (n = 330) from solid and fluid culture media, including BACTEC, or from frozen and lyophilized stocks. The procedure does not involve hybridization steps or the use of radioactivity and can be completed within 1 working day.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis: A Systematic Review

              Background Tuberculosis (TB) incidence and mortality are declining worldwide; however, poor detection of drug-resistant disease threatens to reverse current progress toward global TB control. Multiple, rapid molecular diagnostic tests have recently been developed to detect genetic mutations in Mycobacterium tuberculosis (Mtb) genes known to confer first-line drug resistance. Their utility, though, depends on the frequency and distribution of the resistance associated mutations in the pathogen population. Mutations associated with rifampicin resistance, one of the two first-line drugs, are well understood and appear to occur in a single gene region in >95% of phenotypically resistant isolates. Mutations associated with isoniazid, the other first-line drug, are more complex and occur in multiple Mtb genes. Objectives/Methodology A systematic review of all published studies from January 2000 through August 2013 was conducted to quantify the frequency of the most common mutations associated with isoniazid resistance, to describe the frequency at which these mutations co-occur, and to identify the regional differences in the distribution of these mutations. Mutation data from 118 publications were extracted and analyzed for 11,411 Mtb isolates from 49 countries. Principal Findings/Conclusions Globally, 64% of all observed phenotypic isoniazid resistance was associated with the katG315 mutation. The second most frequently observed mutation, inhA-15, was reported among 19% of phenotypically resistant isolates. These two mutations, katG315 and inhA-15, combined with ten of the most commonly occurring mutations in the inhA promoter and the ahpC-oxyR intergenic region explain 84% of global phenotypic isoniazid resistance. Regional variation in the frequency of individual mutations may limit the sensitivity of molecular diagnostic tests. Well-designed systematic surveys and whole genome sequencing are needed to identify mutation frequencies in geographic regions where rapid molecular tests are currently being deployed, providing a context for interpretation of test results and the opportunity for improving the next generation of diagnostics.
                Bookmark

                Author and article information

                Contributors
                samiaraza@live.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 August 2021
                18 August 2021
                2021
                : 11
                : 16736
                Affiliations
                GRID grid.11173.35, ISNI 0000 0001 0670 519X, Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), , University of the Punjab, ; 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
                Article
                96116
                10.1038/s41598-021-96116-x
                8373971
                34408186
                47c3c8c3-8461-40c2-b18c-d2e1ad22bb9e
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 May 2021
                : 15 July 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                biotechnology,microbiology
                Uncategorized
                biotechnology, microbiology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content220

                Cited by3

                Most referenced authors431