8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The gill-oxygen limitation theory (GOLT) and its critics

      review-article
      Science Advances
      American Association for the Advancement of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gill-oxygen limitation theory (GOLT) explains many previously unexplained aspects of the life history of fish.

          Abstract

          The gill-oxygen limitation theory (GOLT) provides mechanisms for key aspects of the biology (food conversion efficiency, growth and its response to temperature, the timing of maturation, and others) of water-breathing ectotherms (WBEs). The GOLT’s basic tenet is that the surface area of the gills or other respiratory surfaces of WBE cannot, as two-dimensional structures, supply them with sufficient oxygen to keep up with the growth of their three-dimensional bodies. Thus, a lower relative oxygen supply induces sexual maturation, and later a slowing and cessation of growth, along with an increase of physiological processes relying on glycolytic enzymes and a declining role of oxidative enzymes. Because the “dimensional tension” underlying this argument is widely misunderstood, emphasis is given to a detailed refutation of objections to the GOLT. This theory still needs to be put on a solid quantitative basis, which will occur after the misconceptions surrounding it are put to rest.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: not found

          Tracking apex marine predator movements in a dynamic ocean.

          Pelagic marine predators face unprecedented challenges and uncertain futures. Overexploitation and climate variability impact the abundance and distribution of top predators in ocean ecosystems. Improved understanding of ecological patterns, evolutionary constraints and ecosystem function is critical for preventing extinctions, loss of biodiversity and disruption of ecosystem services. Recent advances in electronic tagging techniques have provided the capacity to observe the movements and long-distance migrations of animals in relation to ocean processes across a range of ecological scales. Tagging of Pacific Predators, a field programme of the Census of Marine Life, deployed 4,306 tags on 23 species in the North Pacific Ocean, resulting in a tracking data set of unprecedented scale and species diversity that covers 265,386 tracking days from 2000 to 2009. Here we report migration pathways, link ocean features to multispecies hotspots and illustrate niche partitioning within and among congener guilds. Our results indicate that the California Current large marine ecosystem and the North Pacific transition zone attract and retain a diverse assemblage of marine vertebrates. Within the California Current large marine ecosystem, several predator guilds seasonally undertake north-south migrations that may be driven by oceanic processes, species-specific thermal tolerances and shifts in prey distributions. We identify critical habitats across multinational boundaries and show that top predators exploit their environment in predictable ways, providing the foundation for spatial management of large marine ecosystems. ©2011 Macmillan Publishers Limited. All rights reserved
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging threats and persistent conservation challenges for freshwater biodiversity

            In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nothing in Biology Makes Sense except in the Light of Evolution

                Bookmark

                Author and article information

                Journal
                Sci Adv
                Sci Adv
                SciAdv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                January 2021
                06 January 2021
                : 7
                : 2
                : eabc6050
                Affiliations
                Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada. Email: d.pauly@ 123456oceans.ubc.ca
                Author information
                http://orcid.org/0000-0003-3756-4793
                Article
                abc6050
                10.1126/sciadv.abc6050
                7787657
                33523964
                47a7f18e-218c-47a5-96ea-8b9720bd2154
                Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 06 May 2020
                : 16 November 2020
                Categories
                Review
                Reviews
                SciAdv reviews
                Applied Ecology
                Ecology
                Ecology
                Custom metadata
                Fritzie Benzon

                Comments

                Comment on this article