0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissecting Acute Drug‐Induced Hepatotoxicity and Therapeutic Responses of Steatotic Liver Disease Using Primary Mouse Liver and Blood Cells in a Liver‐On‐A‐Chip Model

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolic dysfunction‐associated steatotic liver disease (MASLD) is hallmarked by hepatic steatosis, cell injury, inflammation, and fibrosis. This study elaborates on a multicellular biochip‐based liver sinusoid model to mimic MASLD pathomechanisms and investigate the therapeutic effects of drug candidates lanifibranor and resmetirom. Mouse liver primary hepatocytes, hepatic stellate cells, Kupffer cells, and endothelial cells are seeded in a dual‐chamber biocompatible liver‐on‐a‐chip (LoC). The LoC is then perfused with circulating immune cells (CICs). Acetaminophen (APAP) and free fatty acids (FFAs) treatment recapitulate acute drug‐induced liver injury and MASLD, respectively. As a benchmark for the LoC, multiplex immunofluorescence on livers from APAP‐injected and dietary MASLD‐induced mice reveals characteristic changes on parenchymal and immune cell populations. APAP exposure induces cell death in the LoC, and increased inflammatory cytokine levels in the circulating perfusate. Under FFA stimulation, lipid accumulation, cellular damage, inflammatory secretome, and fibrogenesis are increased in the LoC, reflecting MASLD. Both injury conditions potentiate CIC migration from the perfusate to the LoC cellular layers. Lanifibranor prevents the onset of inflammation, while resmetirom decreases lipid accumulation in hepatocytes and increases the generation of FFA metabolites in the LoC. This study demonstrates the LoC potential for functional and molecular evaluation of liver disease drug candidates.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Non-alcoholic fatty liver disease

          Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of 25% and is a leading cause of cirrhosis and hepatocellular carcinoma. NAFLD encompasses a disease continuum from steatosis with or without mild inflammation (non-alcoholic fatty liver), to non-alcoholic steatohepatitis (NASH), which is characterised by necroinflammation and faster fibrosis progression than non-alcoholic fatty liver. NAFLD has a bidirectional association with components of the metabolic syndrome, and type 2 diabetes increases the risk of cirrhosis and related complications. Although the leading causes of death in people with NAFLD are cardiovascular disease and extrahepatic malignancy, advanced liver fibrosis is a key prognostic marker for liver-related outcomes and overall mortality, and can be assessed with combinations of non-invasive tests. Patients with cirrhosis should be screened for hepatocellular carcinoma and oesophageal varices. There is currently no approved therapy for NAFLD, although several drugs are in advanced stages of development. Because of the complex pathophysiology and substantial heterogeneity of disease phenotypes, combination treatment is likely to be required for many patients with NAFLD. Healthy lifestyle and weight reduction remain crucial to the prevention and treatment of NAFLD.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms and disease consequences of nonalcoholic fatty liver disease

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunology in the liver--from homeostasis to disease.

              The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Science
                Advanced Science
                Wiley
                2198-3844
                2198-3844
                June 13 2024
                Affiliations
                [1 ] Department of Hepatology & Gastroenterology Campus Virchow‐Klinikum and Campus Charité Mitte Charité – Universitätsmedizin Berlin 13353 Berlin Germany
                [2 ] Institute of Pharmacy Freie Universität Berlin Königin‐Luise‐Str. 2+4 14195 Berlin Germany
                [3 ] Institute of Biochemistry II Center for Sepsis Control and Care Jena University Hospital 07747 Jena Germany
                Article
                10.1002/advs.202403516
                4784c216-46a1-4ef6-8c85-2fa063ea3e3d
                © 2024

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article