17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges in the use of hydrogen for maritime applications

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydrogen is reviewed as a possible new marine fuel, with emphasis on the challenges concerning sustainable production, on board use and safety and specifically the challenges concerning hydrogen storage.

          Abstract

          Maritime shipping is a key factor that enables the global economy, however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses, the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions, the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed, starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods, and in this work we discuss the storage of hydrogen at high pressure, in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.

          Related collections

          Most cited references194

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogen storage in metal-organic frameworks.

          New materials capable of storing hydrogen at high gravimetric and volumetric densities are required if hydrogen is to be widely employed as a clean alternative to hydrocarbon fuels in cars and other mobile applications. With exceptionally high surface areas and chemically-tunable structures, microporous metal-organic frameworks have recently emerged as some of the most promising candidate materials. In this critical review we provide an overview of the current status of hydrogen storage within such compounds. Particular emphasis is given to the relationships between structural features and the enthalpy of hydrogen adsorption, spectroscopic methods for probing framework-H(2) interactions, and strategies for improving storage capacity (188 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sustainable hydrogen production.

            Identifying and building a sustainable energy system are perhaps two of the most critical issues that today's society must address. Replacing our current energy carrier mix with a sustainable fuel is one of the key pieces in that system. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions, and energy security. Issues relating to hydrogen production pathways are addressed here. Future energy systems require money and energy to build. Given that the United States has a finite supply of both, hard decisions must be made about the path forward, and this path must be followed with a sustained and focused effort.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Recent progress in alkaline water electrolysis for hydrogen production and applications

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                February 23 2021
                2021
                : 14
                : 2
                : 815-843
                Affiliations
                [1 ]University of Antwerp
                [2 ]Department of Bioscience Engineering
                [3 ]Sustainable Energy Air and Water Technology
                [4 ]2020 Antwerpen
                [5 ]Belgium
                [6 ]Hydrogen Europe Industry Secretariat
                [7 ]1060 Brussels
                [8 ]CMB NV
                [9 ]2000 Antwerpen
                [10 ]Faculty of Science
                [11 ]Institute for Environment and Sustainable Development (IMDO)
                Article
                10.1039/D0EE01545H
                476130ee-049a-4099-97c3-9d913987784c
                © 2021

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article