Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond vision: effects of light on the circadian clock and mood-related behaviours

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional architecture of the mammalian circadian clock

          Next-generation sequencing approaches have yielded new insights into circadian function. Here, Takahashi reviews genome-wide analyses of the clock transcriptional feedback loop in mammals, which reveal a global circadian regulation of transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription and chromatin remodelling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Central and peripheral circadian clocks in mammals.

            The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phototransduction by retinal ganglion cells that set the circadian clock.

              Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.
                Bookmark

                Author and article information

                Contributors
                urs.albrecht@unifr.ch
                Journal
                NPJ Biol Timing Sleep
                NPJ Biol Timing Sleep
                Npj Biological Timing and Sleep
                Nature Publishing Group UK (London )
                2948-281X
                13 March 2025
                13 March 2025
                2025
                : 2
                : 1
                : 12
                Affiliations
                Department of Biology, University of Fribourg, ( https://ror.org/022fs9h90) Fribourg, Switzerland
                Article
                29
                10.1038/s44323-025-00029-1
                11906358
                40092590
                474f4889-1fc8-48e5-a983-f567b42a14e6
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 September 2024
                : 17 February 2025
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001711, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung;
                Award ID: 310030_219880/1
                Categories
                Review
                Custom metadata
                © Springer Nature Limited 2025

                circadian rhythms and sleep,neuroscience,diseases,psychiatric disorders,depression

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content406

                Most referenced authors1,494