1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Local Structure Awareness-Based Retinal Microaneurysm Detection with Multi-Feature Combination

      , , , , ,
      Biomedicines
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinal microaneurysm (MA) is the initial symptom of diabetic retinopathy (DR). The automatic detection of MA is helpful to assist doctors in diagnosis and treatment. Previous algorithms focused on the features of the target itself; however, the local structural features of the target and background are also worth exploring. To achieve MA detection, an efficient local structure awareness-based retinal MA detection with the multi-feature combination (LSAMFC) is proposed in this paper. We propose a novel local structure feature called a ring gradient descriptor (RGD) to describe the structural differences between an object and its surrounding area. Then, a combination of RGD with the salience and texture features is used by a Gradient Boosting Decision Tree (GBDT) for candidate classification. We evaluate our algorithm on two public datasets, i.e., the e-ophtha MA dataset and retinopathy online challenge (ROC) dataset. The experimental results show that the performance of the trained model significantly improved after combining traditional features with RGD, and the area under the receiver operating characteristic curve (AUC) values in the test results of the datasets e-ophtha MA and ROC increased from 0.9615 to 0.9751 and from 0.9066 to 0.9409, respectively.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Textural Features for Image Classification

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images.

            Convolutional neural networks (CNNs) are deep learning network architectures that have pushed forward the state-of-the-art in a range of computer vision applications and are increasingly popular in medical image analysis. However, training of CNNs is time-consuming and challenging. In medical image analysis tasks, the majority of training examples are easy to classify and therefore contribute little to the CNN learning process. In this paper, we propose a method to improve and speed-up the CNN training for medical image analysis tasks by dynamically selecting misclassified negative samples during training. Training samples are heuristically sampled based on classification by the current status of the CNN. Weights are assigned to the training samples and informative samples are more likely to be included in the next CNN training iteration. We evaluated and compared our proposed method by training a CNN with (SeS) and without (NSeS) the selective sampling method. We focus on the detection of hemorrhages in color fundus images. A decreased training time from 170 epochs to 60 epochs with an increased performance-on par with two human experts-was achieved with areas under the receiver operating characteristics curve of 0.894 and 0.972 on two data sets. The SeS CNN statistically outperformed the NSeS CNN on an independent test set.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                BIOMID
                Biomedicines
                Biomedicines
                MDPI AG
                2227-9059
                January 2022
                January 07 2022
                : 10
                : 1
                : 124
                Article
                10.3390/biomedicines10010124
                35052803
                472eeaff-8b28-475d-b3a1-a15dfb6e34fe
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article