13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Combinatorial effect of plasma treatment, fiber alignment and fiber scale of poly (ε-caprolactone)/collagen multiscale fibers in inducing tenogenesis in non-tenogenic media

      , ,
      Materials Science and Engineering: C
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Local force and geometry sensing regulate cell functions.

          The shapes of eukaryotic cells and ultimately the organisms that they form are defined by cycles of mechanosensing, mechanotransduction and mechanoresponse. Local sensing of force or geometry is transduced into biochemical signals that result in cell responses even for complex mechanical parameters such as substrate rigidity and cell-level form. These responses regulate cell growth, differentiation, shape changes and cell death. Recent tissue scaffolds that have been engineered at the micro- and nanoscale level now enable better dissection of the mechanosensing, transduction and response mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Geometric cues for directing the differentiation of mesenchymal stem cells.

            Significant efforts have been directed to understanding the factors that influence the lineage commitment of stem cells. This paper demonstrates that cell shape, independent of soluble factors, has a strong influence on the differentiation of human mesenchymal stem cells (MSCs) from bone marrow. When exposed to competing soluble differentiation signals, cells cultured in rectangles with increasing aspect ratio and in shapes with pentagonal symmetry but with different subcellular curvature-and with each occupying the same area-display different adipogenesis and osteogenesis profiles. The results reveal that geometric features that increase actomyosin contractility promote osteogenesis and are consistent with in vivo characteristics of the microenvironment of the differentiated cells. Cytoskeletal-disrupting pharmacological agents modulate shape-based trends in lineage commitment verifying the critical role of focal adhesion and myosin-generated contractility during differentiation. Microarray analysis and pathway inhibition studies suggest that contractile cells promote osteogenesis by enhancing c-Jun N-terminal kinase (JNK) and extracellular related kinase (ERK1/2) activation in conjunction with elevated wingless-type (Wnt) signaling. Taken together, this work points to the role that geometric shape cues can play in orchestrating the mechanochemical signals and paracrine/autocrine factors that can direct MSCs to appropriate fates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment.

              Commitment of stem cells to different lineages is regulated by many cues in the local tissue microenvironment. Here we demonstrate that cell shape regulates commitment of human mesenchymal stem cells (hMSCs) to adipocyte or osteoblast fate. hMSCs allowed to adhere, flatten, and spread underwent osteogenesis, while unspread, round cells became adipocytes. Cell shape regulated the switch in lineage commitment by modulating endogenous RhoA activity. Expressing dominant-negative RhoA committed hMSCs to become adipocytes, while constitutively active RhoA caused osteogenesis. However, the RhoA-mediated adipogenesis or osteogenesis was conditional on a round or spread shape, respectively, while constitutive activation of the RhoA effector, ROCK, induced osteogenesis independent of cell shape. This RhoA-ROCK commitment signal required actin-myosin-generated tension. These studies demonstrate that mechanical cues experienced in developmental and adult contexts, embodied by cell shape, cytoskeletal tension, and RhoA signaling, are integral to the commitment of stem cell fate.
                Bookmark

                Author and article information

                Journal
                Materials Science and Engineering: C
                Materials Science and Engineering: C
                Elsevier BV
                09284931
                August 2021
                August 2021
                : 127
                : 112206
                Article
                10.1016/j.msec.2021.112206
                47272c51-de41-4851-95a1-5f9059f40029
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article