10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Transgenerational Effects of Sublethal Imidacloprid and Diversity of Symbiotic Bacteria on Acyrthosiphon gossypii

      , , , , ,
      Insects

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Symbiotic bacteria and hormesis in aphids are the driving forces for pesticide resistance. However, the mechanism remains unclear. In this study, the effects of imidacloprid on the population growth parameters and symbiotic bacterial communities of three successive generations of Acyrthosiphon gossypii were investigated. The bioassay results showed that imidacloprid had high toxicity to A. gossypii with an LC50 of 1.46 mg·L−1. The fecundity and longevity of the G0 generation of A. gossypii decreased when exposed to the LC15 of imidacloprid. The net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), and total reproductive rate (GRR) of G1 and G2 offspring were significantly increased, but those of the control and G3 offspring were not. In addition, sequencing data showed that the symbiotic bacteria of A. gossypii mainly belonged to Proteobacteria, with a relative abundance of 98.68%. The dominant genera of the symbiotic bacterial community were Buchnera and Arsenophonus. After treatment with the LC15 of imidacloprid, the diversity and species number of bacterial communities of A. gossypii decreased for G1–G3 and the abundance of Candidatus-Hamiltonella decreased, but Buchnera increased. These results provide insight into the resistance mechanism of insecticides and the stress adaptation between symbiotic bacteria and aphids.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metagenomic biomarker discovery and explanation

              This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.
                Bookmark

                Author and article information

                Journal
                Insects
                Insects
                2075-4450
                May 2023
                April 29 2023
                : 14
                : 5
                : 427
                Article
                10.3390/insects14050427
                4703bf29-cd97-493c-8334-ff1973bba7de
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article