26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Melatonin on Liver Injuries and Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Liver injuries and diseases are serious health problems worldwide. Various factors, such as chemical pollutants, drugs, and alcohol, could induce liver injuries. Liver diseases involve a wide range of liver pathologies, including hepatic steatosis, fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocarcinoma. Despite all the studies performed up to now, therapy choices for liver injuries and diseases are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries and diseases remains a priority. Melatonin is a well-known natural antioxidant, and has many bioactivities. There are numerous studies investigating the effects of melatonin on liver injuries and diseases, and melatonin could regulate various molecular pathways, such as inflammation, proliferation, apoptosis, metastasis, and autophagy in different pathophysiological situations. Melatonin could be used for preventing and treating liver injuries and diseases. Herein, we conduct a review summarizing the potential roles of melatonin in liver injuries and diseases, paying special attention to the mechanisms of action.

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism

          Melatonin is a tryptophan-derived molecule with pleiotropic activities. It is present in almost all or all organisms. Its synthetic pathway depends on the species in which it is measured. For example, the tryptophan to melatonin pathway differs in plants and animals. It is speculated that the melatonin synthetic machinery in eukaryotes was inherited from bacteria as a result of endosymbiosis. However, melatonin’s synthetic mechanisms in microorganisms are currently unknown. Melatonin metabolism is highly complex with these enzymatic processes having evolved from cytochrome C. In addition to its enzymatic degradation, melatonin is metabolized via pseudoenzymatic and free radical interactive processes. The metabolic products of these processes overlap and it is often difficult to determine which process is dominant. However, under oxidative stress, the free radical interactive pathway may be featured over the others. Because of the complexity of the melatonin degradative processes, it is expected that additional novel melatonin metabolites will be identified in future investigations. The original and primary function of melatonin in early life forms such as in unicellular organisms was as a free radical scavenger and antioxidant. During evolution, melatonin was selected as a signaling molecule to transduce the environmental photoperiodic information into an endocrine message in multicellular organisms and for other purposes as well. As an antioxidant, melatonin exhibits several unique features which differ from the classic antioxidants. These include its cascade reaction with free radicals and its capacity to be induced under moderate oxidative stress. These features make melatonin a potent endogenously-occurring antioxidant that protects organisms from catastrophic oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential

            Acetaminophen (APAP) hepatotoxicity is characterized by an extensive oxidative stress. However, its source, pathophysiological role and possible therapeutic potential if targeted, have been controversially described. Earlier studies argued for cytochrome P450-generated reactive oxygen species (ROS) during APAP metabolism, which resulted in massive lipid peroxidation and subsequent liver injury. However, subsequent studies convincingly challenged this assumption and the current paradigm suggests that mitochondria are the main source of ROS, which impair mitochondrial function and are responsible for cell signaling resulting in cell death. Although immune cells can be a source of ROS in other models, no reliable evidence exists to support a role for immune cell-derived ROS in APAP hepatotoxicity. Recent studies suggest that mitochondrial targeted antioxidants can be viable therapeutic agents against hepatotoxicity induced by APAP overdose, and re-purposing existing drugs to target oxidative stress and other concurrent signaling events can be a promising strategy to increase its potential application in patients with APAP overdose.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin

              Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 μM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3 H248Y ) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2 •− production and suppressed the autophagy induced by 10 μM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2 •−-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                23 March 2017
                April 2017
                : 18
                : 4
                : 673
                Affiliations
                [1 ]Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; zhangjj46@ 123456mail2.sysu.edu.cn (J.-J.Z.); mengx7@ 123456mail2.sysu.edu.cn (X.M.); liya28@ 123456mail2.sysu.edu.cn (Y.L.); zhouyue3@ 123456mail2.sysu.edu.cn (Y.Z.); xudp@ 123456mail2.sysu.edu.cn (D.-P.X.)
                [2 ]School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China; u3003781@ 123456connect.hku.hk
                [3 ]South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China
                Author notes
                [* ]Correspondence: lihuabin@ 123456mail.sysu.edu.cn ; Tel.: +86-20-8733-2391
                Article
                ijms-18-00673
                10.3390/ijms18040673
                5412268
                28333073
                46fa2b48-4d46-42eb-9f8c-35f033eaadf7
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 January 2017
                : 17 March 2017
                Categories
                Review

                Molecular biology
                melatonin,effect,liver injuries,steatosis,fatty liver,hepatitis,fibrosis,cirrhosis,hepatocarcinoma

                Comments

                Comment on this article