3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Bacillus subtilis C-3102 on bone mineral density in healthy postmenopausal Japanese women: a randomized, placebo-controlled, double-blind clinical trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gut microbiota influence the host immune system and are associated with various diseases. In recent years, postmenopausal bone loss has been suggested to be related to gut microbiota. In the present study, we investigated the treatment effect of the probiotic Bacillus subtilis C-3102 (C-3102) on bone mineral density (BMD) and its influence on gut microbiota in healthy postmenopausal Japanese women. Seventy-six healthy postmenopausal Japanese women were treated with a placebo or C-3102 spore-containing tablets for 24 weeks. When compared with the placebo, C-3102 significantly increased total hip BMD (placebo = 0.83 ± 0.63%, C-3102 = 2.53 ± 0.52%, p=0.043). There was a significant group-by-time interaction effect for urinary type I collagen cross-linked N-telopeptide (uNTx) (p=0.033), a marker of bone resorption. Specifically, the C-3102 group showed significantly lower uNTx when compared with the placebo group at 12 weeks of treatment (p=0.015). In addition, in the C-3102 group, there was a trend towards a decrease in the bone resorption marker tartrate-resistant acid phosphatase isoform 5b (TRACP-5b) when compared with the placebo group at 12 weeks of treatment (p=0.052). The relative abundance of genus Bifidobacterium significantly increased at 12 weeks of treatment compared with the baseline in the C-3102 group. The relative abundance of genus Fusobacterium was significantly decreased in the C-3102 group at 12 and 24 weeks of treatment compared with the baseline. These data suggested that C-3102 improves BMD by inhibiting bone resorption and modulating gut microbiota in healthy postmenopausal women.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          QIIME allows analysis of high-throughput community sequencing data.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The impact of the gut microbiota on human health: an integrative view.

            The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. The constituents of the microbiota--bacteria, viruses, and eukaryotes--have been shown to interact with one another and with the host immune system in ways that influence the development of disease. We review these interactions and suggest that a holistic approach to studying the microbiota that goes beyond characterization of community composition and encompasses dynamic interactions between all components of the microbiota and host tissue over time will be crucial for building predictive models for diagnosis and treatment of diseases linked to imbalances in our microbiota. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on osteoarthritis/osteoporosis against disability study.

              Musculoskeletal diseases, especially osteoarthritis (OA) and osteoporosis (OP), impair activities of daily life (ADL) and quality of life (QOL) in the elderly. Although preventive strategies for these diseases are urgently required in an aging society, epidemiological data on these diseases are scant. To clarify the prevalence of knee osteoarthritis (KOA), lumbar spondylosis (LS), and osteoporosis (OP) in Japan, and estimate the number of people with these diseases, we started a large-scale population-based cohort study entitled research on osteoarthritis/osteoporosis against disability (ROAD) in 2005. This study involved the collection of clinical information from three cohorts composed of participants located in urban, mountainous, and coastal areas. KOA and LS were radiographically defined as a grade of > or =2 by the Kellgren-Lawrence scale; OP was defined by the criteria of the Japanese Society for Bone and Mineral Research. The 3,040 participants in total were divided into six groups based on their age: or =80 years. The prevalence of KOA in the age groups or =80 years 0, 9.1, 24.3, 35.2, 48.2, and 51.6%, respectively, in men, and the prevalence in women of the same age groups was 3.2, 11.4, 30.3, 57.1, 71.9, and 80.7%, respectively. With respect to the age groups, the prevalence of LS was 14.3, 45.5, 72.9, 74.6, 85.3, and 90.1% in men, and 9.7, 28.6, 41.7, 55.4, 75.1, and 78.2% in women, respectively. Data of the prevalence of OP at the lumbar spine and femoral neck were also obtained. The estimated number of patients with KOA, LS, and L2-L4 and femoral neck OP in Japan was approximately 25, 38, 6.4, and 11 million, respectively. In summary, we estimated the prevalence of OA and OP, and the number of people affected with these diseases in Japan. The ROAD study will elucidate epidemiological evidence concerning determinants of bone and joint disease.
                Bookmark

                Author and article information

                Journal
                Biosci Microbiota Food Health
                Biosci Microbiota Food Health
                BMFH
                Bioscience of Microbiota, Food and Health
                BMFH Press
                2186-6953
                2186-3342
                16 June 2018
                2018
                : 37
                : 4
                : 87-96
                Affiliations
                [1 ]Department of Microbiological Flora Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., 11-10-5 Fuchinobe, Sagamihara, Kanagawa 252-0206, Japan
                [2 ]R&D Department, Orthomedico Inc., 1-4-1 Koishikawa, Bunkyo-ku, Tokyo, Japan
                [3 ]Takara Clinic, Medical Corporation Seishinkai, Shinagawa-ku, Tokyo, Japan
                [4 ]Tanaka Gastrointestinal Clinic, Shizuoka, Japan
                [5 ]Shimizu Gynecology Clinic, Shizuoka, Japan
                Author notes
                *Corresponding author. Takuou Takimoto (E-mail: takuo.takimoto@ 123456asahigroup-holdings.com )
                Article
                18-006
                10.12938/bmfh.18-006
                6200670
                30370192
                46f7246f-5219-487a-95b7-e9b6a7e20399
                ©2018 BMFH Press

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)

                History
                : 08 March 2018
                : 05 June 2018
                Categories
                Full Paper

                probiotics,osteoporosis,bone,microbiota
                probiotics, osteoporosis, bone, microbiota

                Comments

                Comment on this article