1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Downregulation of CCL22 and mutated NOTCH1 in tongue and mouth floor squamous cell carcinoma results in decreased Th2 cell recruitment and expression, predicting poor clinical outcome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Tongue and mouth floor squamous cell carcinoma (T/MF SCC) exhibits a high rate of local recurrence and cervical lymph node metastasis. The effect of the tumor microenvironment on T/MF SCC remains unclear.

          Materials and methods

          Transcriptome and somatic mutation data of patients with T/MF SCC were obtained from HNSC projects of the Cancer Genome Atlas. Immune infiltration quantification in early- (clinical stage I–II) and advanced-stage (clinical stage III–IV) T/MF SCC was performed using single sample Gene Set Enrichment Analysis and MCPcounter. Differentially expressed gene data were filtered, and their function was assessed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Kaplan–Meier survival curve analysis and Cox regression model were conducted to evaluate the survival of patients with the CCL22 signature. Maftools was used to present the overview of somatic mutations.

          Results

          In T/MF SCC, T helper (Th)2 cell counts were significantly increased in patients with early-stage disease compared to those with advanced-stage disease. Expression of the Th2 cell-related chemokine, CCL22, was downregulated in patients with advanced-stage T/MF SCC. Univariate and multivariate Cox analyses revealed that CCL22 was a good prognostic factor in T/MF SCC. A nomogram based on the expression of CCL22 was constructed to serve as a prognostic indicator for T/MF SCC. NOTCH1 mutations were found at a higher rate in patients with advanced-stage T/MF SCC than in those with early-stage T/MF SCC, resulting in the inhibition of the activation of the NOTCH1-Th2 cell differentiation pathway. The expression levels of CCL22, GATA-3, and IL4 were higher in patients with early-stage T/MF SCC than in those with advanced-stage T/MF SCC.

          Conclusion

          In T/MF SCC, high expression of CCL22 may promote the recruitment of Th2 cells and help predict a better survival. Mutations in NOTCH1 inhibit the differentiation of Th2 cells, facilitating tumor progression through a decrease in Th2 cell recruitment and differentiation.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12885-021-08671-1.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            clusterProfiler: an R package for comparing biological themes among gene clusters.

            Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.

              The Cancer Genome Atlas revealed the genomic landscapes of human cancers. In parallel, immunotherapy is transforming the treatment of advanced cancers. Unfortunately, the majority of patients do not respond to immunotherapy, making the identification of predictive markers and the mechanisms of resistance an area of intense research. To increase our understanding of tumor-immune cell interactions, we characterized the intratumoral immune landscapes and the cancer antigenomes from 20 solid cancers and created The Cancer Immunome Atlas (https://tcia.at/). Cellular characterization of the immune infiltrates showed that tumor genotypes determine immunophenotypes and tumor escape mechanisms. Using machine learning, we identified determinants of tumor immunogenicity and developed a scoring scheme for the quantification termed immunophenoscore. The immunophenoscore was a superior predictor of response to anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1) antibodies in two independent validation cohorts. Our findings and this resource may help inform cancer immunotherapy and facilitate the development of precision immuno-oncology.
                Bookmark

                Author and article information

                Contributors
                liuxiaofang2006@163.com
                caowei561521@hotmail.com
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                15 August 2021
                15 August 2021
                2021
                : 21
                : 922
                Affiliations
                [1 ]GRID grid.412633.1, Department of Oral and Maxillofacial Surgery, , The First Affiliated Hospital of Zhengzhou University, ; Zhengzhou, 450052 People’s Republic of China
                [2 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, Department of Oral and Maxillofacial & Head and Neck, Oncology, Shanghai Ninth People’s Hospital, , Shanghai Jiao Tong University School of Medicine, ; Shanghai, 200011 People’s Republic of China
                [3 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, National Center for stomatology, National Clinical Research Center For Oral diseases, Shanghai Key Laboratory of Stomatology, ; Shanghai, 200011 People’s Republic of China
                [4 ]GRID grid.412633.1, Department of Neurology, , The First Affiliated Hospital of Zhengzhou University, ; Zhengzhou, 450052 People’s Republic of China
                Article
                8671
                10.1186/s12885-021-08671-1
                8364714
                34391381
                46e96d72-3d4b-40b0-bf22-76539124743d
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 21 January 2021
                : 8 August 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                tongue and mouth floor scc,th2 cells,ccl22,notch1,tcga
                Oncology & Radiotherapy
                tongue and mouth floor scc, th2 cells, ccl22, notch1, tcga

                Comments

                Comment on this article