1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploration of bacterial lipopolysaccharide-related genes signature based on T cells for predicting prognosis in colorectal cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: The intratumoral microorganisms participates in the progression and immunotherapy of colorectal cancer (CRC). However, due to technical limitations, the impact of microorganisms on CRC has not been fully understood. Therefore, we conducted a systematic analysis of relationship between bacterial lipopolysaccharide (LPS)-associated genes and immune cells to explore new biomarkers for predicting the prognosis of CRC.

          Methods: The single-cell RNA sequencing data and the Comparative Toxicogenomics Database were used to screen T cells-associated LPS-related genes (TALRGs). Then, we established and validated the TALRGs risk signature in The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) cohort and GSE39582 cohort. Besides, we compared the differences in tumor-infiltrating immune cell types, immunotherapeutic response, somatic mutation profiles, and tumor mutation burden (TMB) between high-risk group and low-risk group. In addition, the immunotherapeutic cohort (Imvigor210) treated with an anti-PD-L1 agent was performed to explore the potential value of the TALRGs signature on immunotherapy.

          Results: Five prognostic TALRGs were identified and selected to build the prognostic model. The high-risk group had poor prognosis in both TCGA-COAD cohort ( P < 0.0001) and GSE39582 cohort ( P = 0.00019). The areas under the curves (AUCs) of TALRGs signature were calculated (TCGA-COAD cohort: 0.624 at 1 years, 0.639 at 3 years, 0.648 at 5 years; anti-PD-L1 cohort was 0.59). The high-risk group had advanced pathological stages and higher TMN stages in both TCGA-COAD cohort and GSE39582 cohort. The high-risk group had the higher infiltration of immunosuppressive cells, the expressions of immune checkpoint molecules, the IC50 values of chemotherapy drugs, and TP53 mutation rate ( P < 0.05). In addition, patients with high TMB had worse prognosis ( P < 0.05). Furthermore, the Imvigor210 also showed patients with high-risk scores had poor prognosis (platinum-treated cohort: P = 0.0032; non-platinum-treated cohort: P = 0.00017).

          Conclusions: Microorganisms are closely related to the tumor microenvironment to influence the progression and immune response of CRC via stimulating T cells through LPS-related genes. The TALRGs signature contributed to predict the prognosis and immunotherapy of CRC, and became new therapeutic targets and biomarkers of CRC.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Robust enumeration of cell subsets from tissue expression profiles

          We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen, and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content, and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Hallmarks of Cancer

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGF-β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells

              Therapeutic antibodies that block the programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer (mUC) 1–5 . However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here, we examined tumours from a large cohort of mUC patients treated with an anti–PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden (TMB). Lack of response was associated with a signature of transforming growth factor β (TGF-β) signalling in fibroblasts, particularly in patients with CD8+ T cells that were excluded from the tumour parenchyma and instead found in the fibroblast- and collagen-rich peritumoural stroma—a common phenotype among patients with mUC. Using a mouse model that recapitulates this immune excluded phenotype, we found that therapeutic administration of a TGF-β blocking antibody together with anti–PD-L1 reduced TGF-β signalling in stromal cells, facilitated T cell penetration into the centre of the tumour, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding outcome in this setting and suggests that TGF-β shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T cell infiltration.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 August 2024
                06 August 2024
                : 16
                : 15
                : 11606-11625
                Affiliations
                [1 ]Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
                [2 ]Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
                [3 ]Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
                Author notes
                [*]

                Equal contribution

                Correspondence to: Hezi Zhang; email: hezizhang2020@163.com, https://orcid.org/0000-0003-4355-6802
                Article
                206041 206041
                10.18632/aging.206041
                11346792
                39115879
                46e10712-2159-42e0-b072-47a11c973ed3
                Copyright: © 2024 Cao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 03 April 2024
                : 19 July 2024
                Categories
                Research Paper

                Cell biology
                colorectal cancer,microorganisms,lipopolysaccharide,tumor microenvironment,t cells
                Cell biology
                colorectal cancer, microorganisms, lipopolysaccharide, tumor microenvironment, t cells

                Comments

                Comment on this article