55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LRP5 deficiency down-regulates Wnt signalling and promotes aortic lipid infiltration in hypercholesterolaemic mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5 −/− mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5 −/− mice fed a hypercholesterolaemic diet. HC feeding in Lrp5 −/− mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/β-CATENIN signalling proteins were down-regulated in HC Lrp5 −/− mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation in atherosclerosis: from pathophysiology to practice.

          Until recently, most envisaged atherosclerosis as a bland arterial collection of cholesterol, complicated by smooth muscle cell accumulation. According to that concept, endothelial denuding injury led to platelet aggregation and release of platelet factors which would trigger the proliferation of smooth muscle cells in the arterial intima. These cells would then elaborate an extracellular matrix that would entrap lipoproteins, forming the nidus of the atherosclerotic plaque. Beyond the vascular smooth muscle cells long recognized in atherosclerotic lesions, subsequent investigations identified immune cells and mediators at work in atheromata, implicating inflammation in this disease. Multiple independent pathways of evidence now pinpoint inflammation as a key regulatory process that links multiple risk factors for atherosclerosis and its complications with altered arterial biology. Knowledge has burgeoned regarding the operation of both innate and adaptive arms of immunity in atherogenesis, their interplay, and the balance of stimulatory and inhibitory pathways that regulate their participation in atheroma formation and complication. This revolution in our thinking about the pathophysiology of atherosclerosis has now begun to provide clinical insight and practical tools that may aid patient management. This review provides an update of the role of inflammation in atherogenesis and highlights how translation of these advances in basic science promises to change clinical practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.

            In humans, low peak bone mass is a significant risk factor for osteoporosis. We report that LRP5, encoding the low-density lipoprotein receptor-related protein 5, affects bone mass accrual during growth. Mutations in LRP5 cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG). We find that OPPG carriers have reduced bone mass when compared to age- and gender-matched controls. We demonstrate LRP5 expression by osteoblasts in situ and show that LRP5 can transduce Wnt signaling in vitro via the canonical pathway. We further show that a mutant-secreted form of LRP5 can reduce bone thickness in mouse calvarial explant cultures. These data indicate that Wnt-mediated signaling via LRP5 affects bone accrual during growth and is important for the establishment of peak bone mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3.

              The cellular mechanisms that directly regulate the inflammatory response after Toll-like receptor (TLR) stimulation are unresolved at present. Here we report that glycogen synthase kinase 3 (GSK3) differentially regulates TLR-mediated production of pro- and anti-inflammatory cytokines. Stimulation of monocytes or peripheral blood mononuclear cells with TLR2, TLR4, TLR5 or TLR9 agonists induced substantial increases in interleukin 10 production while suppressing the release of proinflammatory cytokines after GSK3 inhibition. GSK3 regulated the inflammatory response by differentially affecting the nuclear amounts of transcription factors NF-kappaB subunit p65 and CREB interacting with the coactivator CBP. Administration of a GSK3 inhibitor potently suppressed the proinflammatory response in mice receiving lipopolysaccharide and mediated protection from endotoxin shock. These findings demonstrate a regulatory function for GSK3 in modulating the inflammatory response.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                BlackWell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                April 2015
                05 February 2015
                : 19
                : 4
                : 770-777
                Affiliations
                [a ]Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, Spain
                [b ]Cardiovascular Research Chair, UAB Barcelona, Spain
                Author notes
                * Correspondence to: Lina BADIMON,, Cardiovascular Research Center, CSIC-ICCC,, Hospital de la Santa Creu i Sant Pau,, IIB-Sant Pau, Barcelona, Spain., Tel.: 34935565880, Fax: 34935565559, E-mail: lbadimon@ 123456csic-iccc.org
                [#]

                Both authors contributed equally to this work.

                Article
                10.1111/jcmm.12396
                4395191
                25656427
                46c2b55c-4155-4a77-b713-af974529798b
                © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 May 2014
                : 18 July 2014
                Categories
                Original Articles

                Molecular medicine
                lrp5,atherosclerosis,plasma cholesterol,canonical wnt signalling,macrophages
                Molecular medicine
                lrp5, atherosclerosis, plasma cholesterol, canonical wnt signalling, macrophages

                Comments

                Comment on this article