7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Medulloblastoma in the age of molecular subgroups: a review : JNSPG 75th Anniversary Invited Review Article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medulloblastoma is the most common pediatric malignant brain tumor. Advances in molecular profiling have uncovered significant heterogeneity among medulloblastomas and led to the identification of four distinct subgroups (wingless [WNT], sonic hedgehog [SHH], group 3, and group 4) that represent distinct disease entities in both underlying biology and clinical characteristics. The rapidly expanding repertoire of tools to study developmental and cancer biology is providing a wealth of knowledge about these embryonal tumors and is continuously refining the understanding of this complex cancer. In this review, the history of discovery in medulloblastoma is discussed, setting a foundation to outline the current state of understanding of the molecular underpinnings of this disease, with a focus on genomic events that define the aforementioned subgroups and evolving areas of focus, such as the cell of origin of medulloblastoma and medulloblastoma subtypes. With these recent discoveries in mind, the current state of medulloblastoma treatment and clinical trials is reviewed, including a novel risk stratification system that accounts for the molecular biomarkers of patients with a high risk for refractory disease. Lastly, critical areas of focus for future basic science and clinical research on this disease are discussed, such as the complexities of medulloblastoma metastases and recurrence as well as the priorities and strategies to implement in future clinical trials.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of central nervous system embryonal tumour outcome based on gene expression.

            Embryonal tumours of the central nervous system (CNS) represent a heterogeneous group of tumours about which little is known biologically, and whose diagnosis, on the basis of morphologic appearance alone, is controversial. Medulloblastomas, for example, are the most common malignant brain tumour of childhood, but their pathogenesis is unknown, their relationship to other embryonal CNS tumours is debated, and patients' response to therapy is difficult to predict. We approached these problems by developing a classification system based on DNA microarray gene expression data derived from 99 patient samples. Here we demonstrate that medulloblastomas are molecularly distinct from other brain tumours including primitive neuroectodermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs) and malignant gliomas. Previously unrecognized evidence supporting the derivation of medulloblastomas from cerebellar granule cells through activation of the Sonic Hedgehog (SHH) pathway was also revealed. We show further that the clinical outcome of children with medulloblastomas is highly predictable on the basis of the gene expression profiles of their tumours at diagnosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas

              Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort (n = 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future. Electronic supplementary material The online version of this article (doi:10.1007/s00401-012-0958-8) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Journal of Neurosurgery: Pediatrics
                Journal of Neurosurgery Publishing Group (JNSPG)
                1933-0707
                1933-0715
                October 2019
                October 2019
                : 24
                : 4
                : 353-363
                Affiliations
                [1 ]1Division of Neurosurgery;
                [2 ]2The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children; and
                [3 ]Departments of 3Laboratory Medicine and Pathobiology and
                [4 ]4Surgery, University of Toronto, Ontario, Canada
                Article
                10.3171/2019.5.PEDS18381
                31574483
                46bbb250-d61c-4daa-bc1a-52423da34e89
                © 2019
                History

                Comments

                Comment on this article