242
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4

      brief-report
      , ,
      ACS Chemical Biology
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Bromo- and Extra-Terminal (BET) proteins BRD2, BRD3, and BRD4 play important roles in transcriptional regulation, epigenetics, and cancer and are the targets of pan-BET selective bromodomain inhibitor JQ1. However, the lack of intra-BET selectivity limits the scope of current inhibitors as probes for target validation and could lead to unwanted side effects or toxicity in a therapeutic setting. We designed Proteolysis Targeted Chimeras (PROTACs) that tether JQ1 to a ligand for the E3 ubiquitin ligase VHL, aimed at triggering the intracellular destruction of BET proteins. Compound MZ1 potently and rapidly induces reversible, long-lasting, and unexpectedly selective removal of BRD4 over BRD2 and BRD3. The activity of MZ1 is dependent on binding to VHL but is achieved at a sufficiently low concentration not to induce stabilization of HIF-1α. Gene expression profiles of selected cancer-related genes responsive to JQ1 reveal distinct and more limited transcriptional responses induced by MZ1, consistent with selective suppression of BRD4. Our discovery opens up new opportunities to elucidate the cellular phenotypes and therapeutic implications associated with selective targeting of BRD4.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation.

          The intracellular levels of many proteins are regulated by ubiquitin-dependent proteolysis. One of the best-characterized enzymes that catalyzes the attachment of ubiquitin to proteins is a ubiquitin ligase complex, Skp1-Cullin-F box complex containing Hrt1 (SCF). We sought to artificially target a protein to the SCF complex for ubiquitination and degradation. To this end, we tested methionine aminopeptidase-2 (MetAP-2), which covalently binds the angiogenesis inhibitor ovalicin. A chimeric compound, protein-targeting chimeric molecule 1 (Protac-1), was synthesized to recruit MetAP-2 to SCF. One domain of Protac-1 contains the I kappa B alpha phosphopeptide that is recognized by the F-box protein beta-TRCP, whereas the other domain is composed of ovalicin. We show that MetAP-2 can be tethered to SCF(beta-TRCP), ubiquitinated, and degraded in a Protac-1-dependent manner. In the future, this approach may be useful for conditional inactivation of proteins, and for targeting disease-causing proteins for destruction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL.

            Hypoxia-inducible factor-1 (HIF-1) is a transcriptional complex that controls cellular and systemic homeostatic responses to oxygen availability. HIF-1 alpha is the oxygen-regulated subunit of HIF-1, an alpha beta heterodimeric complex. HIF-1 alpha is stable in hypoxia, but in the presence of oxygen it is targeted for proteasomal degradation by the ubiquitination complex pVHL, the protein of the von Hippel Lindau (VHL) tumour suppressor gene and a component of an E3 ubiquitin ligase complex. Capture of HIF-1 alpha by pVHL is regulated by hydroxylation of specific prolyl residues in two functionally independent regions of HIF-1 alpha. The crystal structure of a hydroxylated HIF-1 alpha peptide bound to VCB (pVHL, elongins C and B) and solution binding assays reveal a single, conserved hydroxyproline-binding pocket in pVHL. Optimized hydrogen bonding to the buried hydroxyprolyl group confers precise discrimination between hydroxylated and unmodified prolyl residues. This mechanism provides a new focus for development of therapeutic agents to modulate cellular responses to hypoxia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical genetic control of protein levels: selective in vivo targeted degradation.

              Genetic loss of function analysis is a powerful method for the study of protein function. However, some cell biological questions are difficult to address using traditional genetic strategies often due to the lack of appropriate genetic model systems. Here, we present a general strategy for the design and syntheses of molecules capable of inducing the degradation of selected proteins in vivo via the ubiquitin-proteasome pathway. Western blot and fluorometric analyses indicated the loss of two different targets: green fluorescent protein (GFP) fused with FK506 binding protein (FKBP12) and GFP fused with the androgen receptor (AR), after treatment with PROteolysis TArgeting Chimeric moleculeS (PROTACS) incorporating a FKBP12 ligand and dihydrotestosterone, respectively. These are the first in vivo examples of direct small molecule-induced recruitment of target proteins to the proteasome for degradation upon addition to cultured cells. Moreover, PROTAC-mediated protein degradation offers a general strategy to create "chemical knockouts," thus opening new possibilities for the control of protein function.
                Bookmark

                Author and article information

                Journal
                ACS Chem Biol
                ACS Chem. Biol
                cb
                acbcct
                ACS Chemical Biology
                American Chemical Society
                1554-8929
                1554-8937
                02 June 2015
                21 August 2015
                : 10
                : 8
                : 1770-1777
                Affiliations
                [1]College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee , James Black Centre, Dow Street, Dundee, DD1 5EH, United Kingdom
                Author notes
                [* ]Phone: +44 (0)1382 386230. E-mail: a.ciulli@ 123456dundee.ac.uk .
                Article
                10.1021/acschembio.5b00216
                4548256
                26035625
                46b3078c-164b-4a98-b1d1-d47bd643339d
                Copyright © 2015 American Chemical Society

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 25 March 2015
                : 02 June 2015
                Categories
                Letters
                Custom metadata
                cb5b00216
                cb-2015-00216z

                Biochemistry
                Biochemistry

                Comments

                Comment on this article