Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells.

          Methodology/Principal Findings

          In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects.

          Conclusions

          3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          The receptors for mammalian sweet and umami taste.

          Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1.

            Glucagon-like peptide-1 (GLP-1), released from gut endocrine L cells in response to glucose, regulates appetite, insulin secretion, and gut motility. How glucose given orally, but not systemically, induces GLP-1 secretion is unknown. We show that human duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Mouse intestinal L cells also express alpha-gustducin. Ingestion of glucose by alpha-gustducin null mice revealed deficiencies in secretion of GLP-1 and the regulation of plasma insulin and glucose. Isolated small bowel and intestinal villi from alpha-gustducin null mice showed markedly defective GLP-1 secretion in response to glucose. The human L cell line NCI-H716 expresses alpha-gustducin, taste receptors, and several other taste signaling elements. GLP-1 release from NCI-H716 cells was promoted by sugars and the noncaloric sweetener sucralose, and blocked by the sweet receptor antagonist lactisole or siRNA for alpha-gustducin. We conclude that L cells of the gut "taste" glucose through the same mechanisms used by taste cells of the tongue. Modulating GLP-1 secretion in gut "taste cells" may provide an important treatment for obesity, diabetes and abnormal gut motility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1.

              Dietary sugars are transported from the intestinal lumen into absorptive enterocytes by the sodium-dependent glucose transporter isoform 1 (SGLT1). Regulation of this protein is important for the provision of glucose to the body and avoidance of intestinal malabsorption. Although expression of SGLT1 is regulated by luminal monosaccharides, the luminal glucose sensor mediating this process was unknown. Here, we show that the sweet taste receptor subunit T1R3 and the taste G protein gustducin, expressed in enteroendocrine cells, underlie intestinal sugar sensing and regulation of SGLT1 mRNA and protein. Dietary sugar and artificial sweeteners increased SGLT1 mRNA and protein expression, and glucose absorptive capacity in wild-type mice, but not in knockout mice lacking T1R3 or alpha-gustducin. Artificial sweeteners, acting on sweet taste receptors expressed on enteroendocrine GLUTag cells, stimulated secretion of gut hormones implicated in SGLT1 up-regulation. Gut-expressed taste signaling elements involved in regulating SGLT1 expression could provide novel therapeutic targets for modulating the gut's capacity to absorb sugars, with implications for the prevention and/or treatment of malabsorption syndromes and diet-related disorders including diabetes and obesity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                15 January 2013
                : 8
                : 1
                : e54500
                Affiliations
                [1 ]Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
                [2 ]Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
                [3 ]Divsion of Environmental Medicine, Defense Medicine Research Institute, National Defense Medical College, Tokorozawa, Japan
                [4 ]Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
                Georgia Health Sciences University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HS. Performed the experiments: YM YN JM TS YY HS. Analyzed the data: YM YN IK HS. Contributed reagents/materials/analysis tools: HK TS TK YY. Wrote the paper: HS.

                Article
                PONE-D-12-24531
                10.1371/journal.pone.0054500
                3545961
                23336004
                4675f43f-3396-4897-9b2b-ac42870a6e3b
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 August 2012
                : 12 December 2012
                Page count
                Pages: 12
                Funding
                This work was supported by the Global Centers of Excellence Program “Signal Transduction in the Regulatory System and Its Disorders” and grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Cell Physiology
                Developmental Biology
                Cell Differentiation
                Molecular Cell Biology
                Signal Transduction
                Signaling in Cellular Processes
                G-Protein Signaling
                Membrane Receptor Signaling
                Neuroscience
                Sensory Systems
                Gustatory System
                Medicine
                Endocrinology
                Diabetic Endocrinology
                Diabetes Mellitus Type 2
                Nutrition
                Obesity

                Uncategorized
                Uncategorized

                Comments

                Comment on this article